Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(1): e14192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38351880

RESUMEN

In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.


Asunto(s)
Relojes Circadianos , Hordeum , Hordeum/metabolismo , Estudio de Asociación del Genoma Completo , Relojes Circadianos/genética , Fotosíntesis/genética
2.
Nat Biotechnol ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267759

RESUMEN

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. A major barrier exists for propagating valuable plants that naturally have low capacity to form ARs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment. Here we describe the synthesis and screening of a focused library of synthetic auxin conjugates in Eucalyptus grandis cuttings and identify 4-chlorophenoxyacetic acid-L-tryptophan-OMe as a competent enhancer of adventitious rooting in a number of recalcitrant woody plants, including apple and argan. Comprehensive metabolic and functional analyses reveal that this activity is engendered by prolonged auxin signaling due to initial fast uptake and slow release and clearance of the free auxin 4-chlorophenoxyacetic acid. This work highlights the utility of a slow-release strategy for bioactive compounds for more effective plant growth regulation.

3.
Environ Microbiol ; 25(9): 1728-1746, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36807446

RESUMEN

Fruits harbour abundant and diverse microbial communities that protect them from post-harvest pathogens. Identification of functional traits associated with a given microbiota can provide a better understanding of their potential influence. Here, we focused on the epiphytic microbiome of apple fruit. We suggest that shotgun metagenomic data can indicate specific functions carried out by different groups and provide information on their potential impact. Samples were collected from the surface of 'Golden Delicious' apples from four orchards that differ in their geographic location and management practice. Approximately 1 million metagenes were predicted based on a high-quality assembly. Functional profiling of the microbiome of fruits from orchards differing in their management practice revealed a functional shift in the microbiota. The organic orchard microbiome was enriched in pathways involved in plant defence activities; the conventional orchard microbiome was enriched in pathways related to the synthesis of antibiotics. The functional significance of the variations was explored using microbial network modelling algorithms to reveal the metabolic role of specific phylogenetic groups. The analysis identified several associations supported by other published studies. For example, the analysis revealed the nutritional dependencies of the Capnodiales group, including the Alternaria pathogen, on aromatic compounds.


Asunto(s)
Ascomicetos , Malus , Microbiota , Frutas , Filogenia , Microbiota/genética
4.
Nature ; 609(7928): 772-778, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045289

RESUMEN

Astrocytic calcium dynamics has been implicated in the encoding of sensory information1-5, and modulation of calcium in astrocytes has been shown to affect behaviour6-10. However, longitudinal investigation of the real-time calcium activity of astrocytes in the hippocampus of awake mice is lacking. Here we used two-photon microscopy to chronically image CA1 astrocytes as mice ran in familiar or new virtual environments to obtain water rewards. We found that astrocytes exhibit persistent ramping activity towards the reward location in a familiar environment, but not in a new one. Shifting the reward location within a familiar environment also resulted in diminished ramping. After additional training, as the mice became familiar with the new context or new reward location, the ramping was re-established. Using linear decoders, we could predict the location of the mouse in a familiar environment from astrocyte activity alone. We could not do the same in a new environment, suggesting that the spatial modulation of astrocytic activity is experience dependent. Our results indicate that astrocytes can encode the expected reward location in spatial contexts, thereby extending their known computational abilities and their role in cognitive functions.


Asunto(s)
Astrocitos , Región CA1 Hipocampal , Recompensa , Animales , Astrocitos/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Calcio/metabolismo , Ingestión de Líquidos , Ratones , Agua
5.
BMC Plant Biol ; 21(1): 509, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732143

RESUMEN

BACKGROUND: Peanut (Arachis hypogaea L.) belongs to an exceptional group of legume plants, wherein the flowers are produced aerially, but the pods develop under the ground. In such a unique environment, the pod's outer shell plays a vital role as a barrier against mechanical damage and soilborne pathogens. Recent studies have reported the uniqueness and importance of gene expression patterns that accompany peanut pods' biogenesis. These studies focused on biogenesis and pod development during the early stages, but the late developmental stages and disease resistance aspects still have gaps. To extend this information, we analyzed the transcriptome generated from four pod developmental stages of two genotypes, Hanoch (Virginia-type) and IGC53 (Peruvian-type), which differs significantly in their pod shell characteristics and pathogen resistance. RESULTS: The transcriptome study revealed a significant reprogramming of the number and nature of differentially expressed (DE) genes during shell development. Generally, the numbers of DE genes were higher in IGC53 than in Hanoch, and the R5-R6 transition was the most dynamic in terms of transcriptomic changes. Genes related to cell wall biosynthesis, modification and transcription factors (TFs) dominated these changes therefore, we focused on their differential, temporal and spatial expression patterns. Analysis of the cellulose synthase superfamily identified specific Cellulose synthase (CesAs) and Cellulose synthase-like (Csl) genes and their coordinated interplay with other cell wall-related genes during the peanut shell development was demonstrated. TFs were also identified as being involved in the shell development process, and their pattern of expression differed in the two peanut genotypes. The shell component analysis showed that overall crude fiber, cellulose, lignin, hemicelluloses and dry matter increased with shell development, whereas K, N, protein, and ash content decreased. Genotype IGC53 contained a higher level of crude fiber, cellulose, NDF, ADF, K, ash, and dry matter percentage, while Hanoch had higher protein and nitrogen content. CONCLUSIONS: The comparative transcriptome analysis identified differentially expressed genes, enriched processes, and molecular processes like cell wall biosynthesis/modifications, carbohydrate metabolic process, signaling, transcription factors, transport, stress, and lignin biosynthesis during the peanut shell development between two contrasting genotypes. TFs and other genes like chitinases were also enriched in peanut shells known for pathogen resistance against soilborne major pathogens causing pod wart disease and pod damages. This study will shed new light on the biological processes involved with underground pod development in an important legume crop.


Asunto(s)
Arachis/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Arachis/genética , Pared Celular/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Glia ; 69(10): 2378-2390, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34117643

RESUMEN

The mounting evidence for the involvement of astrocytes in neuronal circuits function and behavior stands in stark contrast to the lack of detailed anatomical description of these cells and the neurons in their domains. To fill this void, we imaged >30,000 astrocytes in hippocampi made transparent by CLARITY, and determined the elaborate structure, distribution, and neuronal content of astrocytic domains. First, we characterized the spatial distribution of >19,000 astrocytes across CA1 lamina, and analyzed the morphology of thousands of reconstructed domains. We then determined the excitatory somatic content of CA1 astrocytes, and measured the distance between inhibitory neuronal somata to the nearest astrocyte soma. We find that on average, there are almost 14 pyramidal neurons per domain in the CA1, increasing toward the pyramidal layer midline, compared to only five excitatory neurons per domain in the amygdala. Finally, we discovered that somatostatin neurons are found in close proximity to astrocytes, compared to parvalbumin and VIP inhibitory neurons. This work provides a comprehensive large-scale quantitative foundation for studying neuron-astrocyte interactions.


Asunto(s)
Astrocitos , Hipocampo , Neuronas/fisiología , Células Piramidales/fisiología
7.
Neuron ; 105(1): 9-11, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31951529

RESUMEN

Adult oligodendrogenesis is regulated by neuronal activity and learning. Can it affect memory processes? In this issue of Neuron, Steadman et al. (2020) found that newly generated oligodendrocytes are crucial for memory acquisition and consolidation and required for the neuronal coupling between brain regions known to be involved in memory.


Asunto(s)
Consolidación de la Memoria , Animales , Aprendizaje , Memoria , Ratones , Neuroglía , Oligodendroglía
8.
Plant Cell Environ ; 42(11): 3105-3120, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31272129

RESUMEN

Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.


Asunto(s)
Núcleo Celular/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hordeum/metabolismo , Temperatura , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Adaptación Fisiológica/efectos de la radiación , Núcleo Celular/efectos de la radiación , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Citoplasma , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Plastidios , Genotipo , Modelos Genéticos , Fenotipo , Fotosíntesis/efectos de la radiación , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
9.
Cell ; 174(1): 59-71.e14, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804835

RESUMEN

Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.


Asunto(s)
Potenciación a Largo Plazo , Memoria , Neuronas/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Calcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Hipocampo/citología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Optogenética , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estrés Psicológico , Potenciales Sinápticos/efectos de los fármacos
10.
Brain Res Bull ; 141: 35-43, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28939475

RESUMEN

Remote memories, weeks to decades long, are usually the ones most important to the organism, as the longevity of a memory is tightly connected to its significance. Retrograde amnesia studies in human patients as well as lesions and immediate early gene expression investigation in animal models, suggested that the hippocampus has a time dependent role in memory consolidation. Namely, that as a memory matures it becomes independent of the hippocampus and instead depends on extra-hippocampal areas. However, accumulating evidence implies that this temporal segregation is not as rigid as originally proposed. In this review we will focus on the integration of new methods, such as chemogenetics, optogenetics and calcium imaging, which enable genetic specificity as well as high temporal and spatial resolution. Using these methods, recent studies have started to resolve the inconsistencies of past findings by observing and manipulating neural ensembles in different brain regions. We then discuss how these techniques can be applied to investigate the cellular underpinnings of memory across multiple time points, and employed to study the contribution of various cell types to remote memory.


Asunto(s)
Encéfalo/citología , Encéfalo/diagnóstico por imagen , Técnicas Genéticas , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Animales , Encéfalo/fisiología , Encéfalo/fisiopatología , Humanos , Imagen de Colorante Sensible al Voltaje
11.
Front Plant Sci ; 8: 467, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28421098

RESUMEN

The growth habit of lateral shoots (also termed "branching habit") is an important descriptive and agronomic character of peanut. Yet, both the inheritance of branching habit and the genetic mechanism that controls it in this crop remain unclear. In addition, the low degree of polymorphism among cultivated peanut varieties hinders fine-mapping of this and other traits in non-homozygous genetic structures. Here, we combined high-throughput sequencing with a well-defined genetic system to study these issues in peanut. Initially, segregating F2 populations derived from a reciprocal cross between very closely related Virginia-type peanut cultivars with spreading and bunch growth habits were examined. The spreading/bunch trait was shown to be controlled by a single gene with no cytoplasmic effect. That gene was named Bunch1 and was significantly correlated with pod yield per plant, time to maturation and the ratio of "dead-end" pods. Subsequently, bulked segregant analysis was performed on 52 completely bunch, and 47 completely spreading F3 families. In order to facilitate the process of SNP detection and candidate-gene analysis, the transcriptome was used instead of genomic DNA. Young leaves were sampled and bulked. Reads from Illumina sequencing were aligned against the peanut reference transcriptome and the diploid genomes. Inter-varietal SNPs were detected, scored and quality-filtered. Thirty-four candidate SNPs were found to have a bulk frequency ratio value >10 and 6 of those SNPs were found to be located in the genomic region of linkage group B5. Three best hits from that over-represented region were further analyzed in the segregating population. The trait locus was found to be located in a ~1.1 Mbp segment between markers M875 (B5:145,553,897; 1.9 cM) and M255 (B5:146,649,943; 2.25 cM). The method was validated using a population of recombinant inbreed lines of the same cross and a new DNA SNP-array. This study demonstrates the relatively straight-forward utilization of bulk segregant analysis for trait fine-mapping in the low polymeric and heterozygous germplasm of cultivated peanut and provides a baseline for candidate gene discovery and map-based cloning of Bunch1.

12.
Plant Sci ; 248: 116-27, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27181953

RESUMEN

Pod-filling is an important stage of peanut (Arachis hypogaea) seed development. It is partially controlled by genetic factors, as cultivars considerably vary in pod-filling potential. Here, a study was done to detect changes in mRNA levels that accompany pod-filling processes. Four seed developmental stages were sampled from two peanut genotypes differing in their oil content and pod-filling potential. Transcriptome data were generated by RNA-Seq and explored with respect to genic and subgenomic patterns of expression. Very dynamic transcriptomic changes occurred during seed development in both genotypes. Yet, general higher expression rates of transcripts and an enrichment in processes involved "energy generation" and "primary metabolites" were observed in the genotype with the better pod-filling ("Hanoch"). A dataset of 584 oil-related genes was assembled and analyzed, resulting in several lipid metabolic processes highly expressed in Hanoch, including oil storage and FA synthesis/elongation. Homoeolog-specific gene expression analysis revealed that both subgenomes contribute to the oil genes expression. Yet, biases were observed in particular parts of the pathway with possible biological meaning, presumably explaining the genotypic variation in oil biosynthesis and pod-filling. This study provides baseline information and a resource that may be used to understand development and oil biosynthesis in the peanut seeds.


Asunto(s)
Arachis/crecimiento & desarrollo , Aceites de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Arachis/genética , Arachis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Aceite de Cacahuete , Reacción en Cadena de la Polimerasa , Semillas/genética , Semillas/metabolismo
13.
Genome Biol Evol ; 8(12): 3765-3783, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062755

RESUMEN

The cotton genus (Gossypium) provides a superior system for the study of diversification, genome evolution, polyploidization, and human-mediated selection. To gain insight into phenotypic diversification in cotton seeds, we conducted coexpression network analysis of developing seeds from diploid and allopolyploid cotton species and explored network properties. Key network modules and functional associations were identified related to seed oil content and seed weight. We compared species-specific networks to reveal topological changes, including rewired edges and differentially coexpressed genes, associated with speciation, polyploidy, and cotton domestication. Network comparisons among species indicate that topologies are altered in addition to gene expression profiles, indicating that changes in transcriptomic coexpression relationships play a role in the developmental architecture of cotton seed development. The global network topology of allopolyploids, especially for domesticated G. hirsutum, resembles the network of the A-genome diploid more than that of the D-genome parent, despite its D-like phenotype in oil content. Expression modifications associated with allopolyploidy include coexpression level dominance and transgressive expression, suggesting that the transcriptomic architecture in polyploids is to some extent a modular combination of that of its progenitor genomes. Among allopolyploids, intermodular relationships are more preserved between two different wild allopolyploid species than they are between wild and domesticated forms of a cultivated cotton, and regulatory connections of oil synthesis-related pathways are denser and more closely clustered in domesticated vs. wild G. hirsutum. These results demonstrate substantial modification of genic coexpression under domestication. Our work demonstrates how network inference informs our understanding of the transcriptomic architecture of phenotypic variation associated with temporal scales ranging from thousands (domestication) to millions (speciation) of years, and by polyploidy.


Asunto(s)
Evolución Molecular , Redes Reguladoras de Genes/genética , Gossypium/genética , Semillas/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Planta , Humanos , Poliploidía , Selección Genética
14.
J Vis ; 15(14): 13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26505966

RESUMEN

Phonological deficits in dyslexia are well documented. However, there is an ongoing discussion about whether visual deficits limit the reading skills of people with dyslexia. Here, we investigated visual crowding and backward masking. We presented a Vernier (i.e., two vertical bars slightly offset to the left or right) and asked observers to indicate the offset direction. Vernier stimuli are visually similar to letters and are strongly affected by crowding, even in the fovea. To increase task difficulty, Verniers are often followed by a mask (i.e., backward masking). We measured Vernier offset discrimination thresholds for the basic Vernier task, under crowding, and under backward masking, in students with dyslexia (n = 19) and age and intelligence matched students (n = 27). We found no group differences in any of these conditions. Controls with fast visual processing (good backward masking performance), were faster readers. By contrast, no such correlation was found among the students with dyslexia, suggesting that backward masking does not limit their reading efficiency. These findings indicate that neither elevated crowding nor elevated backward masking pose a bottleneck to reading skills of people with dyslexia.


Asunto(s)
Aglomeración , Dislexia/fisiopatología , Enmascaramiento Perceptual/fisiología , Femenino , Fóvea Central , Humanos , Masculino , Lectura , Adulto Joven
15.
Plant Genome ; 8(1): eplantgenome2014.08.0041, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33228286

RESUMEN

Cotton ranks among the world's important oilseed crops, yet relative to other oilseeds there are few studies of oil-related biosynthetic and regulatory pathways. We present global transcriptome analyses of cotton seed development using RNA-seq and four developmental time-points. Because Upland cotton (Gossypium hirsutum L.) is an allopolyploid containing two genomes (A/D), we partitioned expression into the individual contributions of each homeologous gene copy. Data were explored with respect to genic and subgenomic patterns of expression, globally and with respect to seed pathways and networks. The most dynamic period of transcriptome change is from 20-30 d postanthesis (DPA), with about 20% of genes showing homeolog expression bias. Co-expression analysis shows largely congruent homeolog networks, but also homeolog-specific divergence. Functional enrichment tests show that flavonoid biosynthesis and lipid related genes were significantly represented early and later in seed development, respectively. An involvement of new features in oil biosynthesis was found, like the contribution of DGAT3 (diacylglycerol acyltransferase) to the total triglyceride expression pool. Also, catechin-based and epicatechin-based proanthocyanidin expression are reciprocally biased with respect to homeolog usage. This study provides the first temporal analysis of duplicated gene expression in cotton seed and a resource for understanding new aspects of oil and flavonoid biosynthetic processes.

16.
Biochem Soc Trans ; 39(5): 1493-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21936840

RESUMEN

A considerable number of fungal homologues of human apoptotic genes have been identified in recent years. Nevertheless, we are far from being able to connect the different pieces and construct a primary structure of the fungal apoptotic regulatory network. To get a better picture of the available fungal components, we generated an automatic search protocol that is based on protein sequences together with a domain-centred approach. We used this protocol to search all the available fungal databases for domains and homologues of human apoptotic proteins. Among all known apoptotic domains, only the BIR [baculovirus IAP (inhibitor of apoptosis protein) repeat] domain was found in fungi. A single protein with one or two BIR domains is present in most (but not all) fungal species. We isolated the BIR-containing protein from the grey mould fungus Botrytis cinerea and determined its role in apoptosis and pathogenicity. We also isolated and analysed BcNMA, a homologue of the yeast NMA11 gene. Partial knockout or overexpression strains of BcBIR1 confirmed that BcBir1 is anti-apoptotic and this activity was assigned to the N'-terminal part of the protein. Plant infection assays showed that the fungus undergoes massive PCD (programmed cell death) during early stages of infection. Further studies showed that fungal virulence was fully correlated with the ability of the fungus to cope with plant-induced PCD. Together, our result show that BcBir1 is a major regulator of PCD in B. cinerea and that proper regulation of the host-induced PCD is essential for pathogenesis in this and other similar fungal pathogens.


Asunto(s)
Apoptosis/fisiología , Botrytis/genética , Botrytis/fisiología , Botrytis/patogenicidad , Antifúngicos/metabolismo , Biomarcadores/metabolismo , Senescencia Celular/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosinolatos/metabolismo , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...