Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 613(7945): 759-766, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631611

RESUMEN

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Asunto(s)
Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Proteoma , Serina , Treonina , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Especificidad por Sustrato , Treonina/metabolismo , Proteoma/química , Proteoma/metabolismo , Conjuntos de Datos como Asunto , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Línea Celular , Fosfoserina/metabolismo , Fosfotreonina/metabolismo
2.
FASEB J ; 28(9): 3987-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24891520

RESUMEN

Tropomodulin1 (Tmod1) is an actin-capping protein that plays an important role in actin filament pointed-end dynamics and length in striated muscle. No mechanisms have been identified to explain how Tmod1's functional properties are regulated. The purpose of this investigation was to explore the functional significance of the phosphorylation of Tmod1 at previously identified Thr54. Rat cardiomyocytes were assessed for phosphorylation of Tmod1 using Pro-Q Diamond staining and (32)P labeling. Green fluorescent protein-tagged phosphorylation-mimic (T54E) and phosphorylation-deficient (T54A) versions of Tmod1 were expressed in cultured cardiomyocytes, and the ability of these mutants to assemble and restrict actin lengths was observed. We report for the first time that Tmod1 is phosphorylated endogenously in cardiomyocytes, and phosphorylation at Thr54 causes a significant reduction in the ability of Tmod1 to assemble to the pointed end compared with that of the wild type (WT; 48 vs. 78%, respectively). In addition, overexpression of Tmod1-T54E restricts actin filament lengths by only ∼3%, whereas Tmod1-WT restricts the lengths significantly by ∼8%. Finally, Tmod1-T54E altered the actin filament-capping activity in polymerization assays. Taken together, our data suggest that pointed-end assembly and Tmod1's thin filament length regulatory function are regulated by its phosphorylation state.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fragmentos de Péptidos/metabolismo , Tropomodulina/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Mutación/genética , Miocardio/citología , Miocitos Cardíacos/citología , Fosforilación , Ratas , Tropomodulina/genética
3.
Dev Cell ; 28(5): 561-572, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24582807

RESUMEN

The control of germline quality is critical to reproductive success and survival of a species; however, the mechanisms underlying this process remain unknown. Here, we demonstrate that elongation factor 2 kinase (eEF2K), an evolutionarily conserved regulator of protein synthesis, functions to maintain germline quality and eliminate defective oocytes. We show that disruption of eEF2K in mice reduces ovarian apoptosis and results in the accumulation of aberrant follicles and defective oocytes at advanced reproductive age. Furthermore, the loss of eEF2K in Caenorhabditis elegans results in a reduction of germ cell death and significant decline in oocyte quality and embryonic viability. Examination of the mechanisms by which eEF2K regulates apoptosis shows that eEF2K senses oxidative stress and quickly downregulates short-lived antiapoptotic proteins, XIAP and c-FLIPL by inhibiting global protein synthesis. These results suggest that eEF2K-mediated inhibition of protein synthesis renders cells susceptible to apoptosis and functions to eliminate suboptimal germ cells.


Asunto(s)
Apoptosis , Caenorhabditis elegans/fisiología , Quinasa del Factor 2 de Elongación/fisiología , Células Germinativas/patología , Oocitos/fisiología , Control de Calidad , Animales , Western Blotting , Caenorhabditis elegans/citología , Caspasas/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas para Inmunoenzimas , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Noqueados , Células 3T3 NIH , Oocitos/citología , Ovario/citología , Ovario/fisiología , Fosforilación
4.
Biochemistry ; 50(12): 2187-93, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21280599

RESUMEN

TRPM7 is an unusual bifunctional protein consisting of an α-kinase domain fused to a TRP ion channel. Previously, we have identified annexin A1 as a substrate for TRPM7 kinase and found that TRPM7 phosphorylates annexin A1 at Ser5 within the N-terminal α-helix. Annexin A1 is a Ca(2+)-dependent membrane binding protein, which has been implicated in membrane trafficking and reorganization. The N-terminal tail of annexin A1 can interact with either membranes or S100A11 protein, and it adopts the conformation of an amphipathic α-helix upon these interactions. Moreover, the existing evidence indicates that the formation of an α-helix is essential for these interactions. Here we show that phosphorylation at Ser5 prevents the N-terminal peptide of annexin A1 from adopting an α-helical conformation in the presence of membrane-mimetic micelles as well as phospholipid vesicles. We also show that phosphorylation at Ser5 dramatically weakens the binding of the peptide to S100A11. Our data suggest that phosphorylation at Ser5 regulates the interaction of annexin A1 with membranes as well as S100A11 protein.


Asunto(s)
Anexina A1/química , Anexina A1/metabolismo , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosforilación , Estructura Secundaria de Proteína , Proteínas S100/metabolismo , Serina
5.
FEBS Lett ; 582(20): 2993-7, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-18675813

RESUMEN

TRPM6 and TRPM7 encode channel-kinases. While these channels share electrophysiological properties and cellular functions, TRPM6 and TRPM7 are non-redundant genes raising the possibility that the kinases have distinct substrates. Here, we demonstrate that TRPM6 and TRPM7 phosphorylate the assembly domain of myosin IIA, IIB and IIC on identical residues. Whereas phosphorylation of myosin IIA is restricted to the coiled-coil domain, TRPM6 and TRPM7 also phosphorylate the non-helical tails of myosin IIB and IIC. TRPM7 does not phosphorylate eukaryotic elongation factor-2 (eEF-2) and myosin II is a poor substrate for eEF-2 kinase. In conclusion, TRPM6 and TRPM7 share exogenous substrates among themselves but not with functionally distant alpha-kinases.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Línea Celular , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Humanos , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Canales Catiónicos TRPM/genética
6.
J Biol Chem ; 280(45): 37763-71, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16150690

RESUMEN

TRPM7 and its closest homologue, TRPM6, are the only known fusions of an ion channel pore with a kinase domain. Deletion of TRPM7 in DT40 B-lymphocytes causes growth arrest, Mg(2+) deficiency, and cell death within 24-48 h. Amazingly, in analogy to TRPM6-deficient patients who can live a normal life if provided with a Mg(2+)-rich diet, TRPM7-deficient DT40 B-lymphocytes show wild type cell growth if supplied with 5-10 mm Mg(2+) concentrations in their extracellular medium. Here we have investigated the functional relationship between TRPM6 and TRPM7. We show that TRPM7 deficiency in DT40 cells cannot be complemented by heterologously expressed TRPM6. Nevertheless, both channels can influence each other's biological activity. Our data demonstrate that TRPM6 requires TRPM7 for surface expression in HEK-293 cells and also that TRPM6 is capable of cross-phosphorylating TRPM7 as assessed using a phosphothreonine-specific antibody but not vice versa. TRPM6 and TRPM7 coexpression studies in DT40 B-cells indicate that TRPM6 can modulate TRPM7 function. In conclusion, although TRPM6 and TRPM7 are closely related and deficiency in either one of these molecules severely affects Mg(2+) homeostasis regulation, TRPM6 and TRPM7 do not appear to be functionally redundant but rather two unique and essential components of vertebrate ion homeostasis regulation.


Asunto(s)
Canales Catiónicos TRPM/metabolismo , División Celular , Línea Celular , Membrana Celular/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Prueba de Complementación Genética , Homeostasis , Humanos , Magnesio/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Canales Catiónicos TRPM/genética
7.
Proc Natl Acad Sci U S A ; 102(32): 11510-5, 2005 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-16051700

RESUMEN

Guamanian amyotrophic lateral sclerosis (ALS-G) and parkinsonism dementia (PD-G) have been epidemiologically linked to an environment severely deficient in calcium (Ca2+) and magnesium (Mg2+). Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein containing both channel and kinase domains that has been proposed to be involved in the homeostatic regulation of intracellular Ca2+, Mg2+, and trace metal ion concentration. There is evidence that TRPM7 is constitutively active and that the number of available channels is dependent on intracellular free Mg2+ levels. We found a TRPM7 variant in a subset of ALS-G and PD-G patients that produces a protein with a missense mutation, T1482I. Recombinant T1482I TRPM7 exhibits the same kinase catalytic activity as WT TRPM7. However, heterologously expressed T1482I TRPM7 produces functional channels that show an increased sensitivity to inhibition by intracellular Mg2+. Because the incidence of ALS-G and PD-G has been associated with prolonged exposure to an environment severely deficient in Ca2+ and Mg2+, we propose that this variant TRPM7 allele confers a susceptibility genotype in such an environment. This study represents an initial attempt to address the important issue of gene-environment interactions in the etiology of these diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Ambiente , Predisposición Genética a la Enfermedad/genética , Magnesio/metabolismo , Trastornos Parkinsonianos/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Secuencia de Bases , Línea Celular , Electrofisiología , Técnica del Anticuerpo Fluorescente , Guam , Humanos , Datos de Secuencia Molecular , Mutación Missense/genética , Trastornos Parkinsonianos/genética , Proteínas Serina-Treonina Quinasas , Análisis de Secuencia de ADN
8.
J Biol Chem ; 279(49): 50643-6, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15485879

RESUMEN

TRPM7 is an unusual bifunctional molecule consisting of a TRP ion channel fused to a protein kinase domain. It has been shown that TRPM7 plays a key role in the regulation of intracellular magnesium homeostasis as well as in anoxic neuronal death. TRPM7 channel has been characterized using electrophysiological techniques; however, the function of the kinase domain is not known and endogenous substrates for the kinase have not been reported previously. Here we have identified annexin 1 as a substrate for TRPM7 kinase. Phosphorylation of annexin 1 by TRPM7 kinase is stimulated by Ca2+ and is dramatically increased in extracts from cells overexpressing TRPM7. Phosphorylation of annexin 1 by TRPM7 kinase occurs at a conserved serine residue (Ser5) located within the N-terminal amphipathic alpha-helix of annexin 1. The N-terminal region plays a crucial role in interaction of annexin 1 with other proteins and membranes, and therefore, phosphorylation of annexin 1 at Ser5 by TRPM7 kinase may modulate function of annexin 1.


Asunto(s)
Anexina A1/química , Canales Iónicos/fisiología , Proteínas de la Membrana/fisiología , Proteínas Quinasas/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/química , Catepsina D/farmacología , Línea Celular , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Humanos , Canales Iónicos/metabolismo , Iones , Magnesio/química , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/química , Fosforilación , Reacción en Cadena de la Polimerasa , Unión Proteica , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Serina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Canales Catiónicos TRPM , Tripsina/farmacología
9.
J Biol Chem ; 279(5): 3708-16, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14594813

RESUMEN

Channel-kinase TRPM7/ChaK1 is a member of a recently discovered family of protein kinases called alpha-kinases that display no sequence homology to conventional protein kinases. It is an unusual bifunctional protein that contains an alpha-kinase domain fused to an ion channel. The TRPM7/ChaK1 channel has been characterized using electrophysiological techniques, and recent evidence suggests that it may play a key role in the regulation of magnesium homeostasis. However, little is known about its protein kinase activity. To characterize the kinase activity of TRPM7/ChaK1, we expressed the kinase catalytic domain in bacteria. ChaK1-cat is able to undergo autophosphorylation and to phosphorylate myelin basic protein and histone H3 on serine and threonine residues. The kinase is specific for ATP and cannot use GTP as a substrate. ChaK1-cat is insensitive to staurosporine (up to 0.1 mM) but can be inhibited by rottlerin. Because the kinase domain is physically linked to an ion channel, we investigated the effect of ions on ChaK1-cat activity. The kinase requires Mg(2+) (optimum at 4-10 mM) or Mn(2+) (optimum at 3-5 mM), with activity in the presence of Mn(2+) being 2 orders of magnitude higher than in the presence of Mg(2+). Zn(2+) and Co(2+) inhibited ChaK1-cat kinase activity. Ca(2+) at concentrations up to 1 mM did not affect kinase activity. Considering intracellular ion concentrations, our results suggest that, among divalent metal ions, only Mg(2+) can directly modulate TRPM7/ChaK1 kinase activity in vivo.


Asunto(s)
Canales Iónicos/fisiología , Proteínas de la Membrana/fisiología , Proteínas Quinasas/fisiología , Acetofenonas/farmacología , Benzopiranos/farmacología , Calcio/química , Calmodulina/química , Dominio Catalítico , Cationes , Cromatografía en Gel , Cobalto/química , ADN/química , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Electrofisiología , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Células HeLa , Histonas/química , Humanos , Canales Iónicos/química , Iones , Cinética , Magnesio/química , Magnesio/farmacología , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Proteína Básica de Mielina/fisiología , Ácidos Fosfoaminos/química , Fosforilación , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Serina/química , Estaurosporina/farmacología , Canales Catiónicos TRPM , Treonina/química , Factores de Tiempo , Zinc/química
10.
Biochemistry ; 41(45): 13444-50, 2002 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-12416990

RESUMEN

Elongation factor-2 kinase (eEF-2K) is a Ca(2+)/calmodulin-dependent protein kinase that phosphorylates and inactivates eEF-2 and that can regulate the rate of protein synthesis at the elongation stage. Here we report that a slight decrease in pH, within the range observed in vivo, leads to a dramatic activation of eEF-2K. The activity of eEF-2K in mouse liver extracts, as well as the activity of purified recombinant human eEF-2K, is low at pH 7.2-7.4 and is increased by severalfold when the pH drops to 6.6-6.8. eEF-2K requires calmodulin for activity at neutral as well as acidic pH. Kinetic studies demonstrate that the pH does not affect the K(M) for ATP or eEF-2 and activation of eEF-2K at acidic pH is due to an increase in V(max). To analyze the potential role of eEF-2K in regulating protein synthesis by pH, we constructed a mouse fibroblast cell line that expresses eEF-2K in a tetracycline-regulated manner. Overexpression of eEF-2K led to a decreased rate of protein synthesis at acidic pH, but not at neutral pH. Our results suggest that pH-dependent activation of eEF-2K may play a role in the global inhibition of protein synthesis during tissue acidosis, which accompanies such processes as hypoxia and ischemia.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Líquido Intracelular/fisiología , Células 3T3 , Secuencia de Aminoácidos , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/biosíntesis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Calmodulina/fisiología , Dictyostelium , Quinasa del Factor 2 de Elongación , Activación Enzimática/genética , Activación Enzimática/fisiología , Fibroblastos/enzimología , Fibroblastos/metabolismo , Concentración de Iones de Hidrógeno , Líquido Intracelular/enzimología , Cinética , Hígado/enzimología , Hígado/metabolismo , Ratones , Datos de Secuencia Molecular , Factor 2 de Elongación Peptídica/metabolismo , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/metabolismo , Fosforilación , Biosíntesis de Proteínas , Conejos , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...