Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hydrobiologia ; 850(15): 3359-3374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397167

RESUMEN

Headwater streams harbor diverse macroinvertebrate communities and are hotspots for leaf litter breakdown. The process of leaf litter breakdown mediated by macroinvertebrates forms an important link between terrestrial and aquatic ecosystems. Yet, how the vegetation type in the local riparian zone influences leaf-associated macroinvertebrate assemblages and leaf litter breakdown rates is still not resolved. We investigated how leaf-associated macroinvertebrate assemblages and leaf litter fragmentation rates differ between forested and non-forested sites using experimental leaf litter bags in sixteen sites paired across eight headwater streams in Switzerland. Our results show that sensitive taxa of the invertebrate orders Ephemeroptera, Plecoptera and Trichoptera (EPT) and the functional group of shredders were strongly associated with forested sites with overall higher values of abundance, diversity, and biomass of EPTs in forested compared to non-forested sites. However, the importance of riparian vegetation differed between study regions, especially for shredders. Fragmentation rates, which are primarily the result of macroinvertebrate shredding, were on average three times higher in forested compared to non-forested sites. Our results demonstrate that not only the composition of the aquatic fauna but also the functioning of an essential ecosystem process depend on the vegetation type in the local riparian zone. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-022-05049-7.

2.
J Environ Manage ; 264: 110417, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32217312

RESUMEN

Stream restoration efforts have increased, but the success rate is still rather low. The underlying reasons for these unsuccessful restoration efforts remain inconclusive and need urgent clarification. Therefore, the aim of the present study was to evaluate over 40 years of stream restoration to fuel future perspectives. To this purpose we evaluated the influence of policy goals on stream restoration efforts, biophysical restoration objectives, restoration measures applied including the scale of application and monitoring efforts. Information was obtained from five stream restoration surveys that were held among the regional water authorities in the Netherlands over the last 40 years and from an analysis of the international scientific publications on stream restoration spanning the same time period. Our study showed that there was a considerable increase in stream restoration efforts, especially motivated by environmental legislation. However, proper monitoring of the effectiveness of the measures was often lacking. Furthermore, a mismatch between restoration goals and restoration measures was observed. Measures are still mainly focused on hydromorphological techniques, while biological goals remain underexposed and therefore need to be better targeted. Moreover, restoration practices occur mainly on small scales, despite the widely recognized relevance of tackling multiple stressors acting over large scales for stream ecosystem recovery. In order to increase the success rate of restoration projects, it is recommended to improve the design of the accompanying monitoring programmes, allowing to evaluate, over longer time periods, if the measures taken led to the desired results. Secondly, we advise to diagnose the dominant stressors and plan restoration measures at the appropriate scale of these stressors, generally the catchment scale.


Asunto(s)
Restauración y Remediación Ambiental , Ríos , Ecosistema , Monitoreo del Ambiente , Países Bajos
3.
Sci Total Environ ; 703: 135060, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31757549

RESUMEN

The input of land use specific organic matter into lowland streams may impact sediment characteristics in terms of food resources and habitat structure, resulting in differences in macroinvertebrate community composition. Therefore, we investigated to what extent land use specific sediment food and habitat characteristics structure macroinvertebrate communities. To this purpose linear multiple regression models were constructed, in which macroinvertebrate biotic indices were considered as response variables and sediment characteristics as predictor variables, analysed in 20 stream stretches running through five different land use types. Sediment characteristics and macroinvertebrate community composition were land use specific. The carbon/nitrogen (C/N) ratio, woody debris substrate cover and the origin of fatty acids influenced macroinvertebrate community composition. Shannon-Wiener diversity was better explained by fatty acids origin, such as in grassland streams, where a higher relative content of plant derived fatty acids related to a higher macroinvertebrate diversity. In cropland and wastewater treatment plant (WWTP) streams with a low C/N ratio and dominated by microbial derived fatty acids, higher abundances of Oligochaeta and Chironomus sp. were observed. Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness was positively related to woody debris substrate cover, which only occurred in forest streams. Hence, macroinvertebrate community composition was influenced by the origin of the organic material, being either allochthonous or autochthonous and when autochthonous being either autotrophic or heterotrophic. It is therefore concluded that sediment food and habitat characteristics are key ecological filters.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Invertebrados/fisiología , Ríos , Animales , Ecología , Sedimentos Geológicos
4.
Sci Rep ; 9(1): 19685, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873108

RESUMEN

The aim of the present study was to assess the impact of surrounding land use on the structure and functioning of lowland stream ecosystems. To this end, five different land use types were selected (forest, extensive grassland, intensive grassland, cropland and wastewater treatment plant) each represented by four replicate streams, in which diel dissolved oxygen concentrations were recorded, sediment and water quality parameters were measured and macroinvertebrate community composition was determined. Chironomus sp., Oligochaeta and Gastropoda dominated the cropland and wastewater treatment plant (WWTP) streams, while Plecoptera and most Trichoptera only occurred in forest and extensive grassland streams. Forest streams communities were related to a high oxygen saturation, a high C/N ratio in the sediment and woody debris and coarse particulate organic matter (CPOM) substrate cover. Macroinvertebrate communities in cropland and WWTP streams were related to a low oxygen saturation in water and sediment and high concentrations of dissolved nitrogen, phosphorus and carbon. It is concluded that land use specific impacts on lowland streams are likely exerted via fine sediment accumulation in deposition zones, affecting oxygen regimes, sediment oxygen demand and stream metabolism, ultimately changing macroinvertebrate community composition. This study supports therefore the importance of including the catchment scale in ecological stream quality assessments, combining structural and functional endpoints.

5.
Sci Total Environ ; 631-632: 459-468, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29529434

RESUMEN

Despite the widely acknowledged connection between terrestrial and aquatic ecosystems, the contribution of runoff to the sediment composition in lowland stream deposition zones and the subsequent effects on benthic invertebrates remain poorly understood. The aim of this study was therefore to investigate the mechanisms by which runoff affects sediment composition and macroinvertebrates in deposition zones of lowland stream ecosystems. To this end, sediment from runoff and adjacent instream deposition zones from streams with different land use was chemically characterized and the biological effects were assessed at the species, community and ecosystem level. Runoff and deposition zone sediment composition as well as biological responses differed clearly between forest and agricultural streams. The stream deposition zone sediment C/N ratio reflected the respective runoff sediment composition. Deposition zones in the forest stream had a higher C/N ratio in comparison to the agricultural streams. Growth of Hyalella azteca and reproduction of Asellus aquaticus were higher on forest stream sediment, whereas chironomids and worms suffered less mortality on the agricultural sediments containing only natural food. The forest stream deposition zones showed higher values for indices indicative of biological integrity and had a lower sediment oxygen demand. We concluded that agricultural land use affects lowland stream ecosystem deposition zones at the species, community and ecosystem level via altered food quality (C/N ratio) and higher oxygen demand of the sediment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA