Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 343: 126150, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34678454

RESUMEN

Several studies have investigated the removal of pharmaceutically active compounds (PhACs) by wastewater treatment technologies due to the risk that these compounds pose to the environment. In this sense, advanced biological processes have been developed for micropollutants removal, such as membrane bioreactors and moving bed biofilm reactors. Thus, this review holistically evaluated the biodegradation of 18 environmentally hazardous PhACs. Biological processes were assessed including removal efficiencies, environmental risk, and ecological footprint (consumption of resources and energy, atmospheric emissions, and waste generation). The maximum concentration of PhACs for a low or negligible risk scenario in treated wastewater and the potential of biological processes to meet this goal were assessed. Among the evaluated PhACs, the most biodegradable was paracetamol, while the most recalcitrant was diclofenac. Combination of conventional processes and advanced biological processes proved to be the most efficient way to remove several PhACs, mainly the osmotic membrane bioreactor.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Purificación del Agua , Medición de Riesgo , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
2.
Environ Pollut ; 290: 118049, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479163

RESUMEN

Pharmaceutically active compounds are increasingly detected in raw and treated wastewater, surface water, and drinking water worldwide. These compounds can cause adverse effects to the ecosystem even at low concentrations and, to assess these impacts, toxicity tests are essential. However, the toxicity data are scarce for many PhACs, and when available, they are dispersed in the literature. The values of pharmaceuticals concentration in the environment and toxicity data are essential for measuring their environmental and human health risks. Thus this review verified the concentrations of pharmaceuticals in the aquatic environment and the toxicity related to them. The risk assessment was also carried out. Diclofenac, naproxen, erythromycin, roxithromycin, and 17ß-estradiol presented a high environment risk and 17α-ethinylestradiol presented a high human health risk. This shows the potential of these pharmaceuticals to cause adverse effects to the ecosystem and humans and establishes the necessity of their removal through advanced technologies.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...