Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37513863

RESUMEN

In this study, a novel compound was isolated, identified, and its chemical structure was determined from the extract of the roots of Senna velutina. In addition, we sought to evaluate the anticancer potential of this molecule against melanoma and leukemic cell lines and identify the pathways of cell death involved. To this end, a novel anthraquinone was isolated from the barks of the roots of S. velutina, analyzed by HPLC-DAD, and its molecular structure was determined by nuclear magnetic resonance (NMR). Subsequently, their cytotoxic activity was evaluated by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method against non-cancerous, melanoma, and leukemic cells. The migration of melanoma cells was evaluated by the scratch assay. The apoptosis process, caspase-3 activation, analysis of mitochondrial membrane potential, and measurement of ROS were evaluated by flow cytometry technique. In addition, the pharmacological cell death inhibitors NEC-1, RIP-1, BAPTA, Z-VAD, and Z-DEVD were used to confirm the related cell death mechanisms. With the results, it was possible to elucidate the novel compound characterized as 2'-OH-Torosaol I. In normal cells, the compound showed no cytotoxicity in PBMC but reduced the cell viability of all melanoma and leukemic cell lines evaluated. 2'-OH-Torosaol I inhibited chemotaxis of B16F10-Nex2, SK-Mel-19, SK-Mel-28 and SK-Mel-103. The cytotoxicity of the compound was induced by apoptosis via the intrinsic pathway with reduced mitochondrial membrane potential, increased levels of reactive oxygen species, and activation of caspase-3. In addition, the inhibitors demonstrated the involvement of necroptosis and Ca2+ in the death process and confirmed caspase-dependent apoptosis death as one of the main programmed cell death pathways induced by 2'-OH-Torosaol I. Taken together, the data characterize the novel anthraquinone 2'-OH-Torosaol I, demonstrating its anticancer activity and potential application in cancer therapy.

2.
Oxid Med Cell Longev ; 2021: 2169017, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603594

RESUMEN

Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Própolis/farmacología , Animales , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Própolis/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Nutr Biochem ; 85: 108428, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32679443

RESUMEN

Polyphenols have demonstrated several potential biological activities, notably antitumoral activity dependent on immune function. In the present review, we describe studies that investigated antitumor immune responses influenced by polyphenols and the mechanisms by which polyphenols improve the immune response. We also discuss the limitations in related areas, especially unexplored areas of research, and next steps required to develop a therapeutic approach utilizing polyphenols in oncology.


Asunto(s)
Antineoplásicos/farmacología , Factores Inmunológicos/farmacología , Neoplasias/tratamiento farmacológico , Polifenoles/farmacología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Humanos , Inmunidad/efectos de los fármacos , Factores Inmunológicos/farmacocinética , Factores Inmunológicos/uso terapéutico , Neoplasias/inmunología , Polifenoles/farmacocinética , Polifenoles/uso terapéutico , Escape del Tumor/efectos de los fármacos
4.
Biofouling ; 36(5): 516-527, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32619153

RESUMEN

Candida yeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide-PEP-IA18-was evaluated against Candida species. PEP-IA18 was designed from the primary sequence of profilin, a protein from Spodoptera frugiperda, and displayed potent activity against Candida albicans and Candida tropicalis, showing a minimum inhibitory concentration (MIC) of 2.5 µM. Furthermore, the mechanism of action of PEP-IA18 involved interaction with the cell membrane (ergosterol complexation). Treatment at MIC and/or 10 × MIC significantly reduced biofilm formation and viability. PEP-IA18 showed low toxicity toward human fibroblasts and only revealed hemolytic activity at high concentrations. Thus, PEP-IA18 exhibited antifungal and anti-biofilm properties with potential applicability in the treatment of infections caused by Candida species.


Asunto(s)
Antifúngicos/farmacología , Biopelículas , Candida , Profilinas/farmacología , Spodoptera/microbiología , Animales , Candida albicans , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos
5.
Oxid Med Cell Longev ; 2017: 8320804, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213354

RESUMEN

Stingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of Melipona quadrifasciata anthidioides and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, and triterpenes. HEG showed antioxidant action via the direct capture of free radicals and by inhibiting the levels of oxidative hemolysis and malondialdehyde in human erythrocytes under oxidative stress. HEG also reduced the frequency of gene conversion and the number of mutant colonies of S. cerevisiae. The anti-inflammatory action of HEG was demonstrated by the inhibition of hyaluronidase enzyme activity. In addition, HEG induced cell death in all evaluated gram-positive bacteria, gram-negative bacteria, and yeasts, including clinical isolates with antimicrobial drug resistance. Collectively, these results demonstrate the potential of M. q. anthidioides geopropolis for the prevention and treatment of various diseases related to oxidative stress, mutagenesis, inflammatory processes, and microbial infections.


Asunto(s)
Himenópteros/química , Própolis/química , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Flavonoides/química , Flavonoides/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/metabolismo , Himenópteros/metabolismo , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Própolis/farmacología , Saccharomyces cerevisiae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...