Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 26(12): 339, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33179132

RESUMEN

The water influence on electrochemical behaviour of Ag+ ions in urea and choline chloride mixture was investigated by cyclic voltammetry technique, while the molecular insights about the investigated systems were obtained from molecular dynamic (MD) simulation. The water content was variated from 0 up to 10% (v/v). Cyclic voltammetry technique showed that the peak potential for Ag+/Ag redox couples shifted in direction to more positive potentials with the gradual increase of water content in solution, indicating that the addition of water electrocatalyses the kinetics of the reduction of Ag+ ions. The MD simulations demonstrated that water molecules do not interact strongly with Ag+ ions but induce a small reduction in the number of urea molecules around of the ion and that the water molecules adjust to free spaces in the mixture.

2.
Phys Chem Chem Phys ; 20(14): 9321-9327, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29564421

RESUMEN

The effect of water on the physicochemical properties of an ethylene glycol and choline chloride mixture containing Cu2+ ions was investigated by electrochemical techniques and molecular dynamics simulation. The experiments and computational calculations were carried out by increasing the water content from 0 up to 10% (v/v). The cyclic voltammetry and chronopotentiometry techniques showed that the diffusion coefficient of Cu2+ ions increased and that the peak potentials for both the Cu2+/Cu+ and Cu+/Cu redox couples shifted towards more positive potentials with the increase in the water content in the solution. The molecular dynamics simulation indicated that the water molecules replaced the ethylene glycol molecules that were coordinated with Cu2+ ions, while the interactions between Cu2+ and Cl- ions were not influenced by the presence of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...