Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Chem Toxicol ; : 1-9, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326987

RESUMEN

Tobacco stalk is a cellulose-rich material and a sustainable alternative to be applied as a plant-based nanofibrillated cellulose (NFC) source. NFC use has garnered attention in the development of oral pharmaceutical forms, despite concerns about its safety due to the adverse effects of nicotine on health. Therefore, we aimed at establishing the safety of NFC derived from tobacco stalk for its potential use as a novel pharmaceutical excipient, exploring its potential functions for tablet production. We conducted acute and subchronic oral toxicity tests in adult female Wistar rats. Initially, individual animals received sequential doses (175-5,000 mg·kg-1) for 24 hours followed by a careful observation of any toxic effects. Subsequently, 20 rats were divided into four groups for a subchronic assay, evaluating toxicity signs, body weight changes, hematological, biochemical, and histopathological parameters. No deaths or other clinical toxicity signs were observed in either the acute or the subchronic assays. We noticed a significant reduction in body weight gain (p < 0.05) after 14 days. We found statistical differences for hematological and biochemical parameters, unrelated to dosage. There were no observed toxic effects, and tobacco stalk ingestion did not adversely affect organ morphology in the histopathological evaluation. The oral administration of NFC at 5,000 mg·kg-1 per day for 28 days was well-tolerated by treated rats, with no reported deaths. In conclusion, NFC derived from tobacco stalk has shown to be a sustainable and safe alternative for use as an excipient at experimental doses, demonstrating compatibility with its proposed applications.

2.
Pharmaceutics ; 16(1)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276515

RESUMEN

The use of nanocellulose in pharmaceutics is a trend that has emerged in recent years. Its inherently good mechanical properties, compared to different materials, such as its high tensile strength, high elastic modulus and high porosity, as well as its renewability and biodegradability are driving nanocellulose's industrial use and innovations. In this sense, this study aims to conduct a search of patents from 2011 to 2023, involving applications of nanocellulose in pharmaceuticals. A patent search was carried out, employing three different patent databases: Patentscope from World Intellectual Property Organization (WIPO); Espacenet; and LENS.ORG. Patents were separated into two main groups, (i) nanocellulose (NC) comprising all its variations and (ii) bacterial nanocellulose (BNC), and classified into five major areas, according to their application. A total of 215 documents was retrieved, of which 179 were referred to the NC group and 36 to the BNC group. The NC group depicted 49.7%, 15.6%, 16.2%, 8.9% and 9.5% of patents as belonging to design and manufacturing, cell culture systems, drug delivery, wound healing and tissue engineering clusters, respectively. The BNC group classified 44.5% of patents as design and manufacturing and 30.6% as drug delivery, as well as 5.6% and 19.4% of patents as wound healing and tissue engineering, respectively. In conclusion, this work compiled and classified patents addressing exclusively the use of nanocellulose in pharmaceuticals, providing information on its current status and trending advancements, considering environmental responsibility and sustainability in materials and products development for a greener upcoming future.

3.
Saudi Pharm J ; 27(8): 1138-1145, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31885473

RESUMEN

Rosmarinic acid (RA) is a phenolic compound that presents well-documented anti-inflammatory, antioxidant and antitumor activities, and based on its pharmacological potential and poor bioavailability, several solid dosage forms have been developed to RA delivery. Therefore, in literature, there are no reports about RA compatibility with excipients. In this regard, the aim of the present study was to evaluate, for the first time, the compatibility of RA with excipients commonly used in solid dosage forms at a 1:1 (RA:excipient) ratio using differential scanning calorimetry (DSC), thermogravimetry (TG), Fourier-transform infrared (FTIR), solid-state nuclear magnetic resonance (ssNMR), and isothermal stress testing (IST) coupled with liquid chromatography (LC). The excipients selected were hydroxypropyl methylcellulose (HPMC), microcrystalline cellulose (MCC), lactose monohydrate (LAC), polyvinylpyrrolidone (PVP), talc (TALC), croscarmellose sodium (CCS), and magnesium stearate (MgSTE). According to DSC results, physical interactions were found between RA and HPMC, LAC, CCS, and MgSTE. The TG analyses confirmed the physical interactions and suggested chemical incompatibility. FTIR revealed physical interaction of RA with TALC and MgSTE and the ssNMR confirmed the physical interaction showed by FTIR and excluded the presence of chemical incompatibility. By IST, the greatest loss of RA content was found to CCS and MgSTE (>15%), demonstrating chemical incompatibilities with RA. High temperatures used in DSC and TG analyses could be responsible for incompatibilities in binary mixtures (BMs) with HPMC and LAC, while temperature above 25 °C and presence of water were factors that promote incompatibilities in BMs with CCS and MgSTE. Overall results demonstrate that RA was compatible with MCC and PVP.

4.
Mater Sci Eng C Mater Biol Appl ; 96: 539-551, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30606564

RESUMEN

Biomaterials can be applied in tissue engineering as scaffolds that resemble the extracellular matrix functioning as a temporary structure for cell proliferation and reconstruction of new organs and tissues. To evaluate the potential use of scaffolds as a biomaterial, this work proposes the development and characterization of polyurethane (PU), poly(D,L-lactic acid) (PDLLA) and polyurethane/poly(d,l-lactic acid) (PU/PDLLA) scaffolds produced by gas foaming technique. The neat polymers and the blends were characterized, in film form, by gel permeation chromatography (GPC), thermogravimetry (TG), differential scanning calorimetry (DSC) and field emission gun scanning electron microscopy (FEG-SEM). After supercritical fluid technology, in scaffolds form, the samples were characterized by FEG-SEM, pore size, density, cytotoxicity and cell adhesion. For film characterization the PU/PDLLA sample presented intermediate characteristics compared to the neat polymers, exhibiting the behavior of both polymers in the sample without phase separation in the FEG-SEM micrograph and bimodal molar weight distribution by GPC. The scaffolds showed interconnectivity and pore size of 141 µm ±â€¯108 µm for PUsc and 52 µm ±â€¯32 µm for PDLLAsc. The PU/PDLLAsc exhibited a bimodal structure in which the PU in the mixture revealed pores of 75 µm ±â€¯57 µm, while for PDLLA, the pore size was 19 µm ±â€¯12 µm. In vitro tests confirmed the adhesion of L929 cells to PUsc, PDLLAsc and PU/PDLLAsc, showing no cytotoxic effect. Finally, it can be concluded that it is possible to produce PU, PDLLA and PU/PDLLA scaffolds by supercritical fluid, which may be applied as biomaterials.


Asunto(s)
Ensayo de Materiales , Poliésteres , Poliuretanos , Andamios del Tejido/química , Animales , Investigación Biomédica , Línea Celular , Ratones , Poliésteres/química , Poliésteres/farmacología , Poliuretanos/química , Poliuretanos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA