Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e15627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456867

RESUMEN

Background: Step initiation involves anticipatory postural adjustments (APAs) that can be measured using inertial measurement units (IMUs) such as accelerometers. However, previous research has shown heterogeneity in terms of the population studied, sensors used, and methods employed. Validity against gold standard measurements was only found in some studies, and the weight of the sensors varied from 10 to 110 g. The weight of the device is a crucial factor to consider when assessing APAs, as APAs exhibit significantly lower magnitudes and are characterized by discrete oscillations in acceleration paths. Objective: This study aims to validate the performance of a commercially available ultra-light sensor weighing only 5.6 g compared to a 168-g smartphone for measuring APAs during step initiation, using a video capture kinematics system as the gold standard. The hypothesis is that APA oscillation measurements obtained with the ultra-light sensor will exhibit greater similarity to those acquired using video capture than those obtained using a smartphone. Materials and Methods: Twenty subjects were evaluated using a commercial lightweight MetaMotionC accelerometer, a smartphone and a system of cameras-kinematics with a reflective marker on lumbar vertebrae. The subjects initiated 10 trials of gait after a randomized command from the experimenter and APA variables were extracted: APAonset, APAamp, PEAKtime. A repeated measures ANOVA with post-hoc test analyzed the effect of device on APA measurements. Bland-Altman plots were used to evaluate agreement between MetaMotionC, smartphone, and kinematics measurements. Pearson's correlation coefficients were used to assess device correlation. Percentage error was calculated for each inertial sensor against kinematics. A paired Student's t-test compared th devices percentage error. Results: The study found no significant difference in temporal variables APAonset and PEAKtime between MetaMotionC, smartphone, and kinematic instruments, but a significant difference for variable APAamp, with MetaMotionC yielding smaller measurements. The MetaMotionC had a near-perfect correlation with kinematic data in APAonset and APAamp, while the smartphone had a very large correlation in APAamp and a near-perfect correlation in APAonset and PEAKtime. Bland-Altman plots showed non-significant bias between smartphone and kinematics for all variables, while there was a significant bias between MetaMotionC and kinematics for APAamp. The percentage of relative error was not significantly different between the smartphone and MetaMotionC. Conclusions: The temporal analysis can be assessed using ultralight sensors and smartphones, as MetaMotionC and smartphone-based measurements have been found to be valid compared to kinematics. However, caution should be exercised when using ultralight sensors for amplitude measurements, as additional research is necessary to determine their effectiveness in this regard.


Asunto(s)
Marcha , Equilibrio Postural , Humanos , Aceleración , Fenómenos Biomecánicos , Teléfono Inteligente
2.
Gait Posture ; 96: 9-17, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533431

RESUMEN

BACKGROUND: Postural adjustments involve displacements of the center of mass (COM), controlled by the central nervous system (CNS), to maintain equilibrium whilst standing. Postural adjustments can be anticipatory (APAs) or compensatory (CPAs), and are triggered to counteract predictable perturbations. RESEARCH QUESTION: Is the new smartphone application, Momentum, a valid and reliable tool for the assessment of body balance, by measuring APAs and CPAs using accelerometer readings? METHODS: 20 young adults were exposed to external predictable perturbations induced at the shoulder level, whilst standing. COM linear acceleration was recorded by Momentum (extracting data from a smartphone's accelerometer) and a 3D motion capture system. RESULTS: The key results demonstrated a very high, significant correlation (r ≥ 0.7, p < 0.05) between the two device settings in the APA parameters, which obtained r = 0.65, denoting a high correlation. Considering the reliability, variables that are compensatory in nature are presented on a scale of good to excellent in measurement methods, kinematics, and Momentum. However, the anticipatory variables presented excellent reliability only for the kinematics. SIGNIFICANCE: These experiments show that Momentum is a valid method for measuring COM acceleration under predictable perturbations and is reliable for compensatory events.


Asunto(s)
Equilibrio Postural , Postura , Electromiografía/métodos , Humanos , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Postura/fisiología , Reproducibilidad de los Resultados , Teléfono Inteligente , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...