Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(42): 39023-39034, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901482

RESUMEN

In this work, silica nanospheres were used as support for gold nanoparticles and applied for bisphenol A electrochemical detection. The development of new silica-supported materials has attracted increasing attention in the scientific world. One approach of interest is using silica nanospheres as support for gold nanoparticles. These materials have a variety of applications in several areas, such as electrochemical sensors. The obtained materials were characterized by solid-state UV-vis spectroscopy, electron microscopy, X-ray diffraction, and electrochemical techniques. The electrode modified with AuSiO2700/CHI/Pt was applied as an electrochemical sensor for BPA, presenting an oxidation potential of 0.842 V and a higher peak current among the tested materials. The AuSiO2700/CHI/Pt electrode showed a logarithmic response for the detection of BPA in the range of 1-1000 nmol L-1, with a calculated detection limit of 7.75 nmol L-1 and a quantification limit of 25.8 nmol L-1. Thus, the electrode AuSiO2700/CHI/Pt was presented as a promising alternative to an electrochemical sensor in the detection of BPA.

2.
Anal Bioanal Chem ; 411(3): 659-667, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30515537

RESUMEN

There are increasing concerns regarding the risks arising from the contamination of manipulators of antineoplastic drugs promoted by occupational exposure or even in the dosage of drugs. The present work proposes the use of an electrochemical sensor based on a biopolymer extracted from the babassu coconut (Orbignya phalerata) for the determination of an antineoplastic 5-fluorouracil (5-FU) drug as an alternative for the monitoring of these drugs. In order to reduce the cost of this sensor, a flexible gold electrode (FEAu) is proposed. The surface modification of FEAu was performed with the deposition of a casting film of the biopolymer extracted from the babassu mesocarp (BM) and modified with phthalic anhydride (BMPA). The electrochemical activity of the modified electrode was characterized by cyclic voltammetry (CV), and its morphology was observed by atomic force microscopy (AFM). The FEAu/BMPA showed a high sensitivity (8.8 µA/µmol/L) and low limit of detection (0.34 µmol/L) for the 5-FU drug in an acid medium. Electrochemical sensors developed from the babassu mesocarp may be a viable alternative for the monitoring of the 5-FU antineoplastic in pharmaceutical formulations, because in addition to being sensitive to this drug, they are constructed of a natural polymer, renewable, and abundant in nature. Graphical abstract ᅟ.


Asunto(s)
Antimetabolitos Antineoplásicos/análisis , Cocos/química , Técnicas Electroquímicas/instrumentación , Electrodos , Fluorouracilo/análisis , Oro/química , Costos y Análisis de Costo , Monitoreo de Drogas/instrumentación , Electrodos/economía , Límite de Detección , Microscopía de Fuerza Atómica , Oxidación-Reducción , Anhídridos Ftálicos/química , Solubilidad
3.
Sensors (Basel) ; 17(4)2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28420193

RESUMEN

The design of screening methods for the detection of genetically modified organisms (GMOs) in food would improve the efficiency in their control. We report here a PCR amplification method combined with a sequence-specific electrochemical genosensor for the quantification of a DNA sequence characteristic of the 35S promoter derived from the cauliflower mosaic virus (CaMV). Specifically, we employ a genosensor constructed by chemisorption of a thiolated capture probe and p-aminothiophenol gold surfaces to entrap on the sensing layer the unpurified PCR amplicons, together with a signaling probe labeled with fluorescein. The proposed test allows for the determination of a transgene copy number in both hemizygous (maize MON810 trait) and homozygous (soybean GTS40-3-2) transformed plants, and exhibits a limit of quantification of at least 0.25% for both kinds of GMO lines.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa , Biotecnología , Caulimovirus , Productos Agrícolas , ADN de Plantas , Técnicas Electroquímicas , Plantas Modificadas Genéticamente , Zea mays
4.
J Nanobiotechnology ; 12: 36, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25223611

RESUMEN

BACKGROUND: Type I collagen is an abundant natural polymer with several applications in medicine as matrix to regenerate tissues. Silver nanoparticles is an important nanotechnology material with many utilities in some areas such as medicine, biology and chemistry. The present study focused on the synthesis of silver nanoparticles (AgNPs) stabilized with type I collagen (AgNPcol) to build a nanomaterial with biological utility. Three formulations of AgNPcol were physicochemical characterized, antibacterial activity in vitro and cell viability assays were analyzed. AgNPcol was characterized by means of the following: ultraviolet-visible spectroscopy, dynamic light scattering analysis, Fourier transform infrared spectroscopy, atomic absorption analysis, transmission electron microscopy and of X-ray diffraction analysis. RESULTS: All AgNPcol showed spherical and positive zeta potential. The AgNPcol at a molar ratio of 1:6 showed better characteristics, smaller hydrodynamic diameter (64.34 ± 16.05) and polydispersity index (0.40 ± 0.05), and higher absorbance and silver reduction efficiency (0.645 mM), when compared with the particles prepared in other mixing ratios. Furthermore, these particles showed antimicrobial activity against both Staphylococcus aureus and Escherichia coli and no toxicity to the cells at the examined concentrations. CONCLUSIONS: The resulted particles exhibited favorable characteristics, including the spherical shape, diameter between 64.34 nm and 81.76 nm, positive zeta potential, antibacterial activity, and non-toxicity to the tested cells (OSCC).


Asunto(s)
Antibacterianos/farmacología , Colágeno Tipo I/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Antibacterianos/química , Línea Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Colágeno Tipo I/administración & dosificación , Colágeno Tipo I/química , Evaluación Preclínica de Medicamentos/métodos , Dispersión Dinámica de Luz , Escherichia coli/efectos de los fármacos , Humanos , Nanopartículas del Metal/administración & dosificación , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Plata/administración & dosificación , Plata/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
5.
Int J Anal Chem ; 2012: 923208, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22505924

RESUMEN

We take advantage of polyelectrolyte feature exhibited by natural cashew gum (Anacardium occidentale L.) (CG), found in northeast Brazil, to employ it in the formation of electroactive nanocomposites prepared by layer-by-layer (LbL) technique. We used polyaniline unmodified (PANI) or modified with phosphonic acid (PA), PANI-PA as cationic polyelectrolyte. On the other hand, the CG or polyvinyl sulfonic (PVS) acids were used as anionic polyelectrolytes. The films were prepared with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV) of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA). The tests showed great sensitivity of the film for this analyte that was detected at 10(-5) mol L(-1).

6.
Int J Anal Chem ; 2012: 850969, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22287966

RESUMEN

The antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc), widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA), a neurotransmitter associated with diseases such as Alzheimer's and Parkinson's, with detection limits in the order of 10(-6) mol L(-1). The use of DS 01 in LbL film generated selectivity in the detection of DA despite the presence of ascorbic acid found in biological fluids. This work is the first to report that the antimicrobial peptide and NiTsPc LbL film exhibits electroanalytical activity to DA oxidation. The selectivity in the detection of DA is a fundamental aspect for the development of electrochemical sensors with potential applications in the biomedical and pharmaceutical industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...