Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 6836, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321992

RESUMEN

We evaluated the potential effects of ATO in different pediatric SHH-MB cell lines (ONS-76: TP53-wild type; DAOY and UW402: TP53-mutated). MB cell lines molecular subgroup was confirmed and TP53 mutations were validated. Cell viability, clonogenicity and apoptosis were evaluated after ATO treatment at different concentrations (1-16 µM) alone or combined with irradiation doses (0.5, 1, 2 and 4 Gy). Rad51 and Ku86 proteins were evaluated by WB. ATO treatment reduced cell viability for all SHH-MB cell lines. Significant decrease of clonogenic capacity and higher apoptosis rates were also observed after ATO exposure, being cell death more pronounced (>70%) for the SHH-MB TP53-mutated. Combined treatment of ATO with irradiation also reduced colonies formation in UW402 tumor cells, which was independent of DNA damage repair proteins Rad51 and Ku86. In silico analyses suggested that a set of genes from cell cycle and p53 pathways are differentially expressed in SHH tumor subtypes, suggesting that cell lines may respond to therapies according to the gene expression profiles. Herein, we showed ATO cytotoxicity in pediatric SHH cell lines, with marked radiosensitizing effect for the MB-SHH TP53-mutated cells. These results highlight the potential of ATO, alone or in combination with radiotherapy, supporting further clinical investigations.


Asunto(s)
Apoptosis/efectos de los fármacos , Trióxido de Arsénico/farmacología , Meduloblastoma/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/farmacología , Línea Celular Tumoral , Niño , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patología , Proteínas de Neoplasias/metabolismo
2.
Acta Neuropathol Commun ; 7(1): 33, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30832734

RESUMEN

Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450 K to assess methylation profile along with 390 MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450 k. Similarly, we tested this simplified set of gene signatures in 763 MB samples and we were able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k = 4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Meduloblastoma/genética , Meduloblastoma/patología , Análisis por Matrices de Proteínas/métodos , Adolescente , Niño , Preescolar , Metilación de ADN/fisiología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...