Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Clin Biomech (Bristol, Avon) ; 115: 106250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657356

RESUMEN

BACKGROUND: Lower limb amputation does not affect only physical and psychological functioning but the use of a prosthetic device can also lead to increased cognitive demands. Measuring cognitive load objectively is challenging, and therefore, most studies use questionnaires that are easy to apply but can suffer from subjective bias. Motivated by this, the present study investigated whether a mobile eye tracker can be used to objectively measure cognitive load by monitoring gaze behavior during a set of motor tasks. METHODS: Five prosthetic users and eight able-bodied controls participated in this study. Eye tracking data and kinematics were recorded during a set of motor tasks (level ground walking, walking on uneven terrain, obstacle avoidance, stairs up and ramp down, as well as ramp up and stairs down) while the participants were asked to focus their gaze on a visual target for as long as possible. Target fixation times and increase in pupil diameters were determined and correlated to subjective ratings of cognitive load. FINDINGS: Overall, target fixation time and pupil diameter showed strong negative and positive correlations, respectively, to the subjective rating of cognitive load in the able-bodied controls (-0.75 and 0.80, respectively). However, the individual correlation strength, and in some cases, even the sign, was different across participants. A similar trend could be observed in prosthetic users. INTERPRETATION: The results of this study showed that a mobile eye tracker may be used to estimate cognitive load in prosthesis users during locomotor tasks. This paves the way to establish a new approach to assessing cognitive load, which is objective and yet practical and simple to administer. Nevertheless, future studies should corroborate these results by comparing them to other objective measures as well as focus on translating the proposed approach outside of a laboratory.


Asunto(s)
Miembros Artificiales , Cognición , Tecnología de Seguimiento Ocular , Caminata , Humanos , Caminata/fisiología , Masculino , Cognición/fisiología , Adulto , Femenino , Fijación Ocular/fisiología , Extremidad Inferior/fisiopatología , Fenómenos Biomecánicos , Persona de Mediana Edad , Amputados , Movimientos Oculares/fisiología
2.
Exp Brain Res ; 242(5): 1047-1060, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467759

RESUMEN

Electrotactile stimulation through matrix electrodes is a promising technology to restore high-resolution tactile feedback in extended reality applications. One of the fundamental tactile effects that should be simulated is the change in the size of the contact between the finger and a virtual object. The present study investigated how participants perceive the increase of stimulation area when stimulating the index finger using static or dynamic (moving) stimuli produced by activating 1 to 6 electrode pads. To assess the ability to interpret the stimulation from the natural cues (natural decoding), without any prior training, the participants were instructed to draw the size of the stimulated area and identify the size difference when comparing two consecutive stimulations. To investigate if other "non-natural" cues can improve the size estimation, the participants were asked to enumerate the number of active pads following a training protocol. The results demonstrated that participants could perceive the change in size without prior training (e.g., the estimated area correlated with the stimulated area, p < 0.001; ≥ two-pad difference recognized with > 80% success rate). However, natural decoding was also challenging, as the response area changed gradually and sometimes in complex patterns when increasing the number of active pads (e.g., four extra pads needed for the statistically significant difference). Nevertheless, by training the participants to utilize additional cues the limitations of natural perception could be compensated. After the training, the mismatch in the activated and estimated number of pads was less than one pad regardless of the stimulus size. Finally, introducing the movement of the stimulus substantially improved discrimination (e.g., 100% median success rate to recognize ≥ one-pad difference). The present study, therefore, provides insights into stimulation size perception, and practical guidelines on how to modulate pad activation to change the perceived size in static and dynamic scenarios.


Asunto(s)
Señales (Psicología) , Dedos , Percepción del Tacto , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Dedos/fisiología , Percepción del Tacto/fisiología , Estimulación Eléctrica/métodos , Tacto/fisiología , Percepción del Tamaño/fisiología , Estimulación Física
3.
J Neural Eng ; 21(2)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417146

RESUMEN

Objective.Closed-loop myoelectric prostheses, which combine supplementary sensory feedback and electromyography (EMG) based control, hold the potential to narrow the divide between natural and bionic hands. The use of these devices, however, requires dedicated training. Therefore, it is crucial to develop methods that quantify how users acquire skilled control over their prostheses to effectively monitor skill progression and inform the development of interfaces that optimize this process.Approach.Building on theories of skill learning in human motor control, we measured speed-accuracy tradeoff functions (SAFs) to comprehensively characterize learning-induced changes in skill-as opposed to merely tracking changes in task success across training-facilitated by a closed-loop interface that combined proportional control and EMG feedback. Sixteen healthy participants and one individual with a transradial limb loss participated in a three-day experiment where they were instructed to perform the box-and-blocks task using a timed force-matching paradigm at four specified speeds to reach two target force levels, such that the SAF could be determined.Main results.We found that the participants' accuracy increased in a similar way across all speeds we tested. Consequently, the shape of the SAF remained similar across days, at both force levels. Further, we observed that EMG feedback enabled participants to improve their motor execution in terms of reduced trial-by-trial variability, a hallmark of skilled behavior. We then fit a power law model of the SAF, and demonstrated how the model parameters could be used to identify and monitor changes in skill.Significance.We comprehensively characterized how an EMG feedback interface enabled skill acquisition, both at the level of task performance and movement execution. More generally, we believe that the proposed methods are effective for measuring and monitoring user skill progression in closed-loop prosthesis control.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Humanos , Aprendizaje , Análisis y Desempeño de Tareas , Mano , Electromiografía/métodos , Diseño de Prótesis
4.
J Neuroeng Rehabil ; 21(1): 10, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245782

RESUMEN

BACKGROUND: Restorative Brain-Computer Interfaces (BCI) that combine motor imagery with visual feedback and functional electrical stimulation (FES) may offer much-needed treatment alternatives for patients with severely impaired upper limb (UL) function after a stroke. OBJECTIVES: This study aimed to examine if BCI-based training, combining motor imagery with FES targeting finger/wrist extensors, is more effective in improving severely impaired UL motor function than conventional therapy in the subacute phase after stroke, and if patients with preserved cortical-spinal tract (CST) integrity benefit more from BCI training. METHODS: Forty patients with severe UL paresis (< 13 on Action Research Arm Test (ARAT) were randomized to either a 12-session BCI training as part of their rehabilitation or conventional UL rehabilitation. BCI sessions were conducted 3-4 times weekly for 3-4 weeks. At baseline, Transcranial Magnetic Stimulation (TMS) was performed to examine CST integrity. The main endpoint was the ARAT at 3 months post-stroke. A binominal logistic regression was conducted to examine the effect of treatment group and CST integrity on achieving meaningful improvement. In the BCI group, electroencephalographic (EEG) data were analyzed to investigate changes in event-related desynchronization (ERD) during the course of therapy. RESULTS: Data from 35 patients (15 in the BCI group and 20 in the control group) were analyzed at 3-month follow-up. Few patients (10/35) improved above the minimally clinically important difference of 6 points on ARAT, 5/15 in the BCI group, 5/20 in control. An independent-samples Mann-Whitney U test revealed no differences between the two groups, p = 0.382. In the logistic regression only CST integrity was a significant predictor for improving UL motor function, p = 0.007. The EEG analysis showed significant changes in ERD of the affected hemisphere and its lateralization only during unaffected UL motor imagery at the end of the therapy. CONCLUSION: This is the first RCT examining BCI training in the subacute phase where only patients with severe UL paresis were included. Though more patients in the BCI group improved relative to the group size, the difference between the groups was not significant. In the present study, preserved CTS integrity was much more vital for UL improvement than which type of intervention the patients received. Larger studies including only patients with some preserved CST integrity should be attempted.


Asunto(s)
Interfaces Cerebro-Computador , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Proyectos Piloto , Accidente Cerebrovascular/complicaciones , Extremidad Superior , Paresia/rehabilitación
5.
Artif Organs ; 48(6): 626-635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38149317

RESUMEN

BACKGROUND: Electrotactile systems are compact interfaces that can be used to convey information through the skin by producing a range of haptic sensations. In many applications, however, the user needs to perceive and interpret haptic stimulation while being engaged in parallel activities. Developing methods that ensure reliable recognition of electrotactile messages despite additional cognitive load is, therefore, an important step for the practical application of electrotactile displays. METHODS: This study investigated if a simple strategy of repeating electrotactile messages can improve message identification during multitasking. Ten participants identified 36 spatiotemporal electrotactile messages delivered through a 3 × 2 pad-matrix electrode placed on the torso while performing a concomitant cognitive task in three conditions: the messages were presented once (No-REP), and each message was repeated three (REP3) and five (REP5) times. The main outcome measure was the success rate (SR) of message identification. RESULTS: During multitasking, in the No-REP condition, the SR (median (IQR)) dropped to 56.25% (22.62%), demonstrating that the cognitive task decreased performance. However, the SR significantly improved with message repetitions, reaching 72.92% (21.87%) and 81.25% (18.66%) in REP3 and REP5 conditions respectively, without a statistically significant difference between REP3 and REP5. CONCLUSIONS: Multitasking affected the efficacy of haptic communication, but message repetition was shown to be an effective strategy for improving performance. Additionally, only three repetitions were enough, as an additional increase in the duration of message transmission (5 repetitions) did not lead to further improvement. This study is an important step toward delivering electrotactile communication that can cope with the demands of real-world applications.


Asunto(s)
Cognición , Electrodos , Tacto , Humanos , Masculino , Cognición/fisiología , Femenino , Tacto/fisiología , Adulto Joven , Adulto , Diseño de Equipo
6.
Artículo en Inglés | MEDLINE | ID: mdl-37930904

RESUMEN

Reliable force control is especially important when using myoelectric upper-limb prostheses as the force defines whether an object will be firmly grasped, damaged, or dropped. It is known from human motor control that the grasping of non-disabled subjects is based on a combination of anticipation and feedback correction. Inspired by this insight, the present study proposes a novel approach to provide artificial sensory feedback to the user of a myoelectric prosthesis using vibrotactile stimulation to facilitate both predictive and corrective processes characteristic of grasping in non-disabled people. Specifically, the level of EMG was conveyed to the subjects while closing the prosthesis (predictive strategy), whereas the actual grasping force was transmitted when the prosthesis closed (corrective strategy). To investigate if this combined EMG and force feedback is indeed an effective method to explicitly close the control loop, 16 non-disabled and 3 transradial amputee subjects performed a set of functional tasks, inspired by the "Box and Block" test, with six target force levels, in three conditions: no feedback, only EMG feedback, and combined feedback. The highest overall performance in non-disabled subjects was obtained with combined feedback (79.6±9.9%), whereas the lowest was achieved with no feedback (53±11.5%). The combined feedback, however, increased the task completion time compared to the other two conditions. A similar trend was obtained also in three amputee subjects. The results, therefore, indicate that the feedback inspired by human motor control is indeed an effective approach to improve prosthesis grasping in realistic conditions when other sources of feedback (vision and audition) are not blocked.


Asunto(s)
Miembros Artificiales , Humanos , Diseño de Prótesis , Retroalimentación Sensorial/fisiología , Fuerza de la Mano/fisiología , Electromiografía/métodos , Ácido Dioctil Sulfosuccínico , Mano
7.
IEEE Trans Haptics ; 16(4): 748-759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37801385

RESUMEN

Electrotactile stimulation can be an attractive technology to restore tactile feedback in different application scenarios (e.g., virtual and augmented reality, tele-manipulation). This technology allows designing compact solutions with no mechanical elements that can integrate a high-density matrix of stimulation points. The present study introduced four novel multi-pad finger-electrode designs with different arrangements (two matrix and two circular) and shapes of active pads (producing sensation) and reference pads (ideally, no sensation produced below the pad). The electrodes were used to investigate the subjects' ability to spatially discriminate active pads within phalanges individually (6-9 pads) as well as across the full finger (18-19 pads). The tests were conducted in 12 subjects and the results showed that all designs led to high success rates when applied to the fingertip (70-81%). When tested on the full finger, the matrix and circular designs were characterized with similar performance (54-57%), and when the phalanges were analyzed individually, the spatial discrimination was best at the fingertip. Additionally, new approaches for faster amplitude calibration were proposed and tested, demonstrating that calibration duration can be reduced by approximately 40% compared to the standard approach of calibrating single pads individually. Finally, discrimination tests of dynamic tactile patterns were conducted using circular and matrix designs on the fingertip and full finger, respectively. The tests showed that the different patterns generated by the two arrangements could be clearly discriminated, especially in the case of full-finger matrix-style patterns. The present study, therefore, provides several important insights that are relevant when delivering tactile feedback to the finger using an electrotactile interface.


Asunto(s)
Percepción del Tacto , Humanos , Percepción del Tacto/fisiología , Estimulación Eléctrica/métodos , Tacto/fisiología , Dedos/fisiología , Electrodos
8.
Sci Robot ; 8(83): eadk6086, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37820005

RESUMEN

Surgical neural engineering and human-machine interfacing enable bionic limbs with dexterous control and sensory feedback.


Asunto(s)
Biónica , Robótica , Humanos , Retroalimentación Sensorial
9.
J Neuroeng Rehabil ; 20(1): 119, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705008

RESUMEN

BACKGROUND: Closing the control loop in myoelectric prostheses by providing artificial somatosensory feedback is recognized as an important goal. However, designing a feedback interface that is effective in realistic conditions is still a challenge. Namely, in some situations, feedback can be redundant, as the information it provides can be readily obtained through hearing or vision (e.g., grasping force estimated from the deformation of a compliant object). EMG feedback is a non-invasive method wherein the tactile stimulation conveys to the user the level of their own myoelectric signal, hence a measurement intrinsic to the interface, which cannot be accessed incidentally. METHODS: The present study investigated the efficacy of EMG feedback in prosthesis force control when 10 able-bodied participants and a person with transradial amputation used a myoelectric prosthesis to grasp compliant objects of different stiffness values. The performance with feedback was compared to that achieved when the participants relied solely on incidental cues. RESULTS: The main outcome measures were the task success rate and completion time. EMG feedback resulted in significantly higher success rates regardless of pin stiffness, indicating that the feedback enhanced the accuracy of force application despite the abundance of incidental cues. Contrary to expectations, there was no difference in the completion time between the two feedback conditions. Additionally, the data revealed that the participants could produce smoother control signals when they received EMG feedback as well as more consistent commands across trials, signifying better control of the system by the participants. CONCLUSIONS: The results presented in this study further support the efficacy of EMG feedback when closing the prosthesis control loop by demonstrating its benefits in particularly challenging conditions which maximized the utility of intrinsic feedback sources.


Asunto(s)
Miembros Artificiales , Humanos , Retroalimentación , Amputación Quirúrgica , Señales (Psicología)
10.
Sci Rep ; 13(1): 12461, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528160

RESUMEN

Bidirectional human-machine interfaces involve commands from the central nervous system to an external device and feedback characterizing device state. Such feedback may be elicited by electrical stimulation of somatosensory nerves, where a task-relevant variable is encoded in stimulation amplitude or frequency. Recently, concurrent modulation in amplitude and frequency (multimodal encoding) was proposed. We hypothesized that feedback with multimodal encoding may effectively be processed by the central nervous system as two independent inputs encoded in amplitude and frequency, respectively, thereby increasing state estimate quality in accordance with maximum-likelihood estimation. Using an adaptation paradigm, we tested this hypothesis during a grasp force matching task where subjects received electrotactile feedback encoding instantaneous force in amplitude, frequency, or both, in addition to their natural force feedback. The results showed that adaptations in grasp force with multimodal encoding could be accurately predicted as the integration of three independent inputs according to maximum-likelihood estimation: amplitude modulated electrotactile feedback, frequency modulated electrotactile feedback, and natural force feedback (r2 = 0.73). These findings show that multimodal electrotactile feedback carries an intrinsic advantage for state estimation accuracy with respect to single-variable modulation and suggest that this scheme should be the preferred strategy for bidirectional human-machine interfaces with electrotactile feedback.


Asunto(s)
Retroalimentación Sensorial , Fuerza de la Mano , Humanos , Funciones de Verosimilitud , Retroalimentación , Retroalimentación Sensorial/fisiología , Estimulación Eléctrica , Fuerza de la Mano/fisiología , Tacto/fisiología
11.
J Neuroeng Rehabil ; 20(1): 108, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592336

RESUMEN

BACKGROUND: One of the drawbacks of lower-limb prostheses is that they do not provide explicit somatosensory feedback to their users. Electrotactile stimulation is an attractive technology to restore such feedback because it enables compact solutions with multiple stimulation points. This allows stimulating a larger skin area to provide more information concurrently and modulate parameters spatially as well as in amplitude. However, for effective use, electrotactile stimulation needs to be calibrated and it would be convenient to perform this procedure while the subject is seated. However, amplitude and spatial perception can be affected by motion and/or physical coupling between the residual limb and the socket. In the present study, we therefore evaluated and compared the psychometric properties of multichannel electrotactile stimulation applied to the thigh/residual limb during sitting versus walking. METHODS: The comprehensive assessment included the measurement of the sensation and discomfort thresholds (ST & DT), just noticeable difference (JND), number of distinct intervals (NDI), two-point discrimination threshold (2PD), and spatial discrimination performance (SD). The experiment involved 11 able-bodied participants (4 females and 7 males; 29.2 ± 3.8 years), 3 participants with transtibial amputation, and 3 participants with transfemoral amputation. RESULTS: In able-bodied participants, the results were consistent for all the measured parameters, and they indicated that both amplitude and spatial perception became worse during walking. More specifically, ST and DT increased significantly during walking vs. sitting (2.90 ± 0.82 mA vs. 2.00 ± 0.52 mA; p < 0.001 for ST and 7.74 ± 0.84 mA vs. 7.21 ± 1.30 mA; p < 0.05 for DT) and likewise for the JND (22.47 ± 12.21% vs. 11.82 ± 5.07%; p < 0.01), while the NDI became lower (6.46 ± 3.47 vs. 11.27 ± 5.18 intervals; p < 0.01). Regarding spatial perception, 2PD was higher during walking (69.78 ± 17.66 mm vs. 57.85 ± 14.87 mm; p < 0.001), while the performance of SD was significantly lower (56.70 ± 10.02% vs. 64.55 ± 9.44%; p < 0.01). For participants with lower-limb amputation, the ST, DT, and performance in the SD assessment followed the trends observed in the able-bodied population. The results for 2PD and JND were however different and subject-specific. CONCLUSION: The conducted evaluation demonstrates that electrotactile feedback should be calibrated in the conditions in which it will be used (e.g., during walking). The calibration during sitting, while more convenient, might lead to an overly optimistic (or in some cases pessimistic) estimate of sensitivity. In addition, the results underline that calibration is particularly important in people affected by lower-limb loss to capture the substantial variability in the conditions of the residual limb and prosthesis setup. These insights are important for the implementation of artificial sensory feedback in lower-limb prosthetics applications.


Asunto(s)
Amputados , Caminata , Femenino , Masculino , Humanos , Amputación Quirúrgica , Extremidad Inferior , Percepción
12.
IEEE Trans Haptics ; 16(3): 379-390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37436850

RESUMEN

When using EMG biofeedback to control the grasping force of a myoelectric prosthesis, subjects need to activate their muscles and maintain the myoelectric signal within an appropriate interval. However, their performance decreases for higher forces, because the myoelectric signal is more variable for stronger contractions. Therefore, the present study proposes to implement EMG biofeedback using nonlinear mapping, in which EMG intervals of increasing size are mapped to equal-sized intervals of the prosthesis velocity. To validate this approach, 20 non-disabled subjects performed force-matching tasks using Michelangelo prosthesis with and without EMG biofeedback with linear and nonlinear mapping. Additionally, four transradial amputees performed a functional task in the same feedback and mapping conditions. The success rate in producing desired force was significantly higher with feedback (65.4±15.9%) compared to no feedback (46.2±14.9%) as well as when using nonlinear (62.4±16.8%) versus linear mapping (49.2±17.2%). Overall, in non-disabled subjects, the highest success rate was obtained when EMG biofeedback was combined with nonlinear mapping (72%), and the opposite for linear mapping with no feedback (39.6%). The same trend was registered also in four amputee subjects. Therefore, EMG biofeedback improved prosthesis force control, especially when combined with nonlinear mapping, which showed to be an effective approach to counteract increasing variability of myoelectric signal for stronger contractions.


Asunto(s)
Amputados , Miembros Artificiales , Percepción del Tacto , Humanos , Electromiografía , Biorretroalimentación Psicológica , Diseño de Prótesis
13.
IEEE Trans Biomed Eng ; 70(12): 3354-3365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37314906

RESUMEN

OBJECTIVE: The bidirectional communication between the user and the prosthesis is an important requirement when developing prosthetic hands. Proprioceptive feedback is fundamental to perceiving prosthesis movement without the need for constant visual attention. We propose a novel solution to encode wrist rotation using a vibromotor array and Gaussian interpolation of vibration intensity. The approach generates tactile sensation that smoothly rotates around the forearm congruently with prosthetic wrist rotation. The performance of this scheme was systematically assessed for a range of parameter values (number of motors and Gaussian standard deviation). METHODS: Fifteen non-disabled subjects and one individual with congenital limb deficiency used vibrational feedback to control a virtual hand in the target-achievement control test. Performance was assessed by end-point error and efficiency as well as subjective impressions. RESULTS: The results showed a preference for smooth feedback and a higher number of motors (8 and 6 versus 4). With 8 and 6 motors, the standard deviation, determining the sensation spread and continuity, could be modulated through a broad range of values (0.1 - 2) without a significant performance loss. The overall average error and efficiency across these feedback configurations were ∼ 10% and ∼ 30%, respectively. For low values of standard deviation (0.1-0.5), the number of motors could be reduced to 4 without a significant performance decrease. CONCLUSION: The study demonstrated that the developed strategy provided meaningful rotation feedback. Moreover, the results indicate that the Gaussian standard deviation could be used as an independent parameter to encode an additional feedback variable. SIGNIFICANCE: The proposed method is a flexible and effective approach to provide proprioceptive feedback while adjusting the trade-off between sensation quality and the number of vibromotors.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Humanos , Tacto , Mano , Antebrazo
14.
Sci Robot ; 8(78): eadd5434, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37196072

RESUMEN

Human manual dexterity relies critically on touch. Robotic and prosthetic hands are much less dexterous and make little use of the many tactile sensors available. We propose a framework modeled on the hierarchical sensorimotor controllers of the nervous system to link sensing to action in human-in-the-loop, haptically enabled, artificial hands.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Percepción del Tacto , Humanos , Mano/fisiología , Tacto/fisiología
15.
Clin Biomech (Bristol, Avon) ; 106: 105988, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37230008

RESUMEN

BACKGROUND: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. METHODS: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. FINDINGS: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). INTERPRETATION: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.


Asunto(s)
Miembros Artificiales , Humanos , Análisis de la Marcha , Estudios de Factibilidad , Marcha , Amputación Quirúrgica , Caminata , Articulación de la Rodilla/cirugía , Rodilla , Fenómenos Biomecánicos
16.
Artículo en Inglés | MEDLINE | ID: mdl-37058389

RESUMEN

State-of-the-art myoelectric hand prostheses provide multi-functional control but lack somatosensory feedback. To accommodate the full functionality of a dexterous prosthesis, the artificial sensory feedback needs to convey several degrees of freedom (DoF) simultaneously. However, this is a challenge with current methods as they are characterized by a low information bandwidth. In this study, we leverage the flexibility of a recently developed system for simultaneous electrotactile stimulation and electromyography (EMG) recording to present the first solution for closed-loop myoelectric control of a multifunctional prosthesis with full-state anatomically congruent electrotactile feedback. The novel feedback scheme (coupled encoding) conveyed proprioceptive (hand aperture, wrist rotation) and exteroceptive information (grasping force). The coupled encoding was compared to the conventional approach (sectorized encoding) and incidental feedback in 10 non-disabled and one amputee participant who used the system to perform a functional task. The results showed that both feedback approaches increased the accuracy of position control compared to incidental feedback. However, the feedback increased completion time, and it did not significantly improve grasping force control. Importantly, the performance of the coupled feedback was not significantly different compared to the conventional scheme, despite the latter being easier to learn during training. Overall, the results indicate that the developed feedback can improve prosthesis control across multiple DoFs but they also highlight the subjects' ability to exploit minimal incidental information. Importantly, the current setup is the first to convey three feedback variables simultaneously using electrotactile stimulation while providing multi-DoF myoelectric control with all hardware components mounted on the same forearm.


Asunto(s)
Miembros Artificiales , Tacto , Humanos , Diseño de Prótesis , Tacto/fisiología , Implantación de Prótesis , Mano/fisiología , Electromiografía/métodos , Retroalimentación Sensorial/fisiología , Fuerza de la Mano/fisiología
17.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36772153

RESUMEN

Recording electrical muscle activity using a dense matrix of detection points (high-density electromyography, EMG) is of interest in a range of different applications, from human-machine interfacing to rehabilitation and clinical assessment. The wider application of high-density EMG is, however, limited as the clinical interfaces are not convenient for practical use (e.g., require conductive gel/cream). In the present study, we describe a novel dry electrode (TEX) in which the matrix of sensing pads is screen printed on textile and then coated with a soft polymer to ensure good skin-electrode contact. To benchmark the novel solution, an identical electrode was produced using state-of-the-art technology (polyethylene terephthalate with hydrogel, PET) and a process that ensured a high-quality sample. The two electrodes were then compared in terms of signal quality as well as functional application. The tests showed that the signals collected using PET and TEX were characterised by similar spectra, magnitude, spatial distribution and signal-to-noise ratio. The electrodes were used by seven healthy subjects and an amputee participant to recognise seven hand gestures, leading to similar performance during offline analysis and online control. The comprehensive assessment, therefore, demonstrated that the proposed textile interface is an attractive solution for practical applications.


Asunto(s)
Hidrogeles , Textiles , Humanos , Electromiografía , Electrodos , Piel
18.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36850871

RESUMEN

This study proposes a bioinspired exotendon routing configuration for a tendon-based mechanism to provide finger flexion and extension that utilizes a single motor to reduce the complexity of the system. The configuration was primarily inspired by the extrinsic muscle-tendon units of the human musculoskeletal system. The function of the intrinsic muscle-tendon units was partially compensated by adding a minor modification to the configuration of the extrinsic units. The finger kinematics produced by this solution during flexion and extension were experimentally evaluated on an artificial finger and compared to that obtained using the traditional mechanism, where one exotendon was inserted at the distal phalanx. The experiments were conducted on nine healthy subjects who wore a soft exoskeleton glove equipped with the novel tendon mechanism. Contrary to the traditional approach, the proposed mechanism successfully prevented the hyperextension of the distal interphalangeal (DIP) and the metacarpophalangeal (MCP) joints. During flexion, the DIP joint angles produced by the novel mechanism were smaller than the angles generated by the traditional approach for the same proximal interphalangeal (PIP) joint angles. This provided a flexion trajectory closer to the voluntary flexion motion and avoided straining the interphalangeal coupling between the DIP and PIP joints. Finally, the proposed solution generated similar trajectories when applied to a stiff artificial finger (simulating spasticity). The results, therefore, demonstrate that the proposed approach is indeed an effective solution for the envisioned soft hand exoskeleton system.


Asunto(s)
Biomimética , Dispositivo Exoesqueleto , Humanos , Extremidad Superior , Mano , Tendones
19.
J Neuroeng Rehabil ; 19(1): 119, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335345

RESUMEN

BACKGROUND: The development of bionic legs has seen substantial improvements in the past years but people with lower-limb amputation still suffer from impairments in mobility (e.g., altered balance and gait control) due to significant limitations of the contemporary prostheses. Approaching the problem from a human-centered perspective by focusing on user-specific needs can allow identifying critical improvements that can increase the quality of life. While there are several reviews of user needs regarding upper limb prostheses, a comprehensive summary of such needs for those affected by lower limb loss does not exist. METHODS: We have conducted a systematic review of the literature to extract important needs of the users of lower-limb prostheses. The review included 56 articles in which a need (desire, wish) was reported explicitly by the recruited people with lower limb amputation (N = 8149). RESULTS: An exhaustive list of user needs was collected and subdivided into functional, psychological, cognitive, ergonomics, and other domain. Where appropriate, we have also briefly discussed the developments in prosthetic devices that are related to or could have an impact on those needs. In summary, the users would like to lead an independent life and reintegrate into society by coming back to work and participating in social and leisure activities. Efficient, versatile, and stable gait, but also support to other activities (e.g., sit to stand), contribute to safety and confidence, while appearance and comfort are important for the body image. However, the relation between specific needs, objective measures of performance, and overall satisfaction and quality of life is still an open question. CONCLUSIONS: Identifying user needs is a critical step for the development of new generation lower limb prostheses that aim to improve the quality of life of their users. However, this is not a simple task, as the needs interact with each other and depend on multiple factors (e.g., mobility level, age, gender), while evolving in time with the use of the device. Hence, novel assessment methods are required that can evaluate the impact of the system from a holistic perspective, capturing objective outcomes but also overall user experience and satisfaction in the relevant environment (daily life).


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Amputación Quirúrgica , Amputados/psicología , Calidad de Vida , Extremidad Superior
20.
Sensors (Basel) ; 22(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36236758

RESUMEN

Electrotactile stimulation is a technology that reproducibly elicits tactile sensations and can be used as an alternative channel to communicate information to the user. The presented work is a part of an effort to develop this technology into an unobtrusive communication tool for first responders. In this study, the aim was to compare the success rate (SR) between discriminating stimulation at six spatial locations (static encoding) and recognizing six spatio-temporal patterns where pads are activated sequentially in a predetermined order (dynamic encoding). Additionally, a procedure for a fast amplitude calibration, that includes a semi-automated initialization and an optional manual adjustment, was employed and evaluated. Twenty subjects, including twelve first responders, participated in the study. The electrode comprising the 3 × 2 matrix of pads was placed on the lateral torso. The results showed that high SRs could be achieved for both types of message encoding after a short learning phase; however, the dynamic approach led to a statistically significant improvement in messages recognition (SR of 93.3%), compared to static stimulation (SR of 83.3%). The proposed calibration procedure was also effective since in 83.8% of the cases the subjects did not need to adjust the stimulation amplitude manually.


Asunto(s)
Torso , Tacto , Calibración , Comunicación , Estimulación Eléctrica/métodos , Electrodos , Humanos , Tacto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...