Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Aging Cell ; : e14185, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725150

RESUMEN

The voltage-gated Kv3.1/KCNC1 channel is abundantly expressed in fast-spiking principal neurons and GABAergic inhibitory interneurons throughout the ascending auditory pathway and in various brain regions. Inactivating mutations in the KCNC1 gene lead to forms of epilepsy and a decline in the expression of the Kv3.1 channel is involved in age-related hearing loss. As oxidative stress plays a fundamental role in the pathogenesis of epilepsy and age-related hearing loss, we hypothesized that an oxidative insult might affect the function of this channel. To verify this hypothesis, the activity and expression of endogenous and ectopic Kv3.1 were measured in models of oxidative stress-related aging represented by cell lines exposed to 100 mM d-galactose. In these models, intracellular reactive oxygen species, thiobarbituric acid reactive substances, sulfhydryl groups of cellular proteins, and the activity of catalase and superoxide dismutase were dysregulated, while the current density of Kv3.1 was significantly reduced. Importantly, the antioxidant melatonin reverted all these effects. The reduction of function of Kv3.1 was not determined by direct oxidation of amino acid side chains of the protein channel or reduction of transcript or total protein levels but was linked to reduced trafficking to the cell surface associated with Src phosphorylation as well as metabolic and endoplasmic reticulum stress. The data presented here specify Kv3.1 as a novel target of oxidative stress and suggest that Kv3.1 dysfunction might contribute to age-related hearing loss and increased prevalence of epilepsy during aging. The pharmacological use of the antioxidant melatonin can be protective in this setting.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38400873

RESUMEN

PURPOSE: Hearing loss (HL) is often monogenic. The clinical importance of genetic testing in HL may further increase when gene therapy products become available. Diagnoses are, however, complicated by a high genetic and allelic heterogeneity, particularly of autosomal dominant (AD) HL. This work aimed to characterize the mutational spectrum of AD HL in Austria. METHODS: In an ongoing prospective study, 27 consecutive index patients clinically diagnosed with non-syndromic AD HL, including 18 previously unpublished cases, were analyzed using whole-exome sequencing (WES) and gene panels. Novel variants were characterized using literature and bioinformatic means. Two additional Austrian medical centers provided AD HL mutational data obtained with in-house pipelines. Other Austrian cases of AD HL were gathered from literature. RESULTS: The solve rate (variants graded as likely pathogenic (LP) or pathogenic (P)) within our cohort amounted to 59.26% (16/27). MYO6 variants were the most common cause. One third of LP/P variants were truncating variants in haploinsufficiency genes. Ten novel variants in HL genes were identified, including six graded as LP or P. In one cohort case and one external case, the analysis uncovered previously unrecognized syndromic presentations. CONCLUSION: More than half of AD HL cases analyzed at our center were solved with WES. Our data demonstrate the importance of genetic testing, especially for the diagnosis of syndromic presentations, enhance the molecular knowledge of genetic HL, and support other laboratories in the interpretation of variants.

3.
Biofactors ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095328

RESUMEN

Melatonin is a pleiotropic biofactor and an effective antioxidant and free radical scavenger and, as such, can be protective in oxidative stress-related brain conditions including epilepsy and aging. To test the potential protective effect of melatonin on brain homeostasis and identify the corresponding molecular targets, we established a new model of oxidative stress-related aging neuroglia represented by U-87 MG cells exposed to D-galactose (D-Gal). This model was characterized by a substantial elevation of markers of oxidative stress, lipid peroxidation, and protein oxidation. The function of the inward rectifying K+ channel Kir2.1, which was identified as the main Kir channel endogenously expressed in these cells, was dramatically impaired. Kir2.1 was unlikely a direct target of oxidative stress, but the loss of function resulted from a reduction of protein abundance, with no alterations in transcript levels and trafficking to the cell surface. Importantly, melatonin reverted these changes. All findings, including the melatonin antioxidant effect, were reproduced in heterologous expression systems. We conclude that the glial Kir2.1 can be a target of oxidative stress and further suggest that inhibition of its function might alter the extracellular K+ buffering in the brain, therefore contributing to neuronal hyperexcitability and epileptogenesis during aging. Melatonin can play a protective role in this context.

4.
Front Physiol ; 14: 1303815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111898

RESUMEN

Introduction: During their lifespan in the bloodstream, red blood cells (RBCs) are exposed to multiple stressors, including increased oxidative stress, which can affect their morphology and function, thereby contributing to disease. Aim: This investigation aimed to explore the cellular and molecular mechanisms related to oxidative stress underlying anion exchanger 1 activity (band 3, SLC4A1/AE1) in human RBCs. To achieve this aim, the relationship between RBC morphology and functional and metabolic activity has been explored. Moreover, the potential protective effect of an anthocyanin-enriched fraction extracted from Callistemon citrinus flowers was studied. Methods: Cellular morphology, parameters of oxidative stress, as well as the anion exchange capability of band 3 have been analyzed in RBCs treated for 1 h with 50 mM of the pro-oxidant 2,2'-azobis (2-methylpropionamide)-dihydrochloride (AAPH). Before or after the oxidative insult, subsets of cells were exposed to 0.01 µg/mL of an anthocyanin-enriched fraction for 1 h. Results: Exposure to AAPH caused oxidative stress, exhaustion of reduced glutathione, and over-activation of the endogenous antioxidant machinery, resulting in morphological alterations of RBCs, specifically the formation of acanthocytes, increased lipid peroxidation and oxidation of proteins, as well as abnormal distribution and hyper-phosphorylation of band 3. Expected, oxidative stress was also associated with a decreased band 3 ion transport activity and an increase of oxidized haemoglobin, which led to abnormal clustering of band 3. Exposure of cells to the anthocyanin-enriched fraction prior to, but not after, oxidative stress efficiently counteracted oxidative stress-related alterations. Importantly, protection of band3 function from oxidative stress could only be achieved in intact cells and not in RBC ghosts. Conclusion: These findings contribute a) to clarify oxidative stress-related physiological and biochemical alterations in human RBCs, b) propose anthocyanins as natural antioxidants to neutralize oxidative stress-related modifications, and 3) suggest that cell integrity, and therefore a cytosolic component, is required to reverse oxidative stress-related pathophysiological derangements in human mature RBCs.

5.
Front Physiol ; 14: 1225552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457030

RESUMEN

Introduction: Aging is a process characterised by a decline in physiological functions. Reactive species play a crucial role in the aging rate. Due to the close relationship between aging and oxidative stress, functional foods rich in phytochemicals are excellent candidates to neutralise age-related changes. Aim: This investigation aims to verify the potential protective role of bergamot (Citrus bergamia, Femminello cultivar) peel and juice extract in a model of aging represented by human red blood cells (RBCs) exposed to D-Galactose (DGal). Methods: Bergamot peel and juice extracts were subjected to RP-HPLC/PDA/MS for determination of their composition in bioactive compounds. Markers of oxidative stress, including ROS production, thiobarbituric acid reactive substances (TBARS) levels -a marker of lipid peroxidation, oxidation of total protein sulfhydryl groups, as well as the expression and anion exchange capability of band 3 and glycated haemoglobin (A1c) production have been investigated in RBCs treated with D-Gal for 24 h, with or without pre-incubation for 15 min with 5 µg/mL peel or juice extract. In addition, the activity of the endogenous antioxidant system, including catalase (CAT) and superoxide dismutase (SOD), as well as the diversion of the RBC metabolism from glycolysis towards the pentose phosphate pathway shunt, as denoted by activation of glucose-6-phosphate dehydrogenase (G6PDH), have been explored. Results: Data shown here suggest that bergamot peel and juice extract i) prevented the D-Gal-induced ROS production, and consequently, oxidative stress injury to biological macromolecules including membrane lipids and proteins; ii) significantly restored D-Gal-induced alterations in the distribution and ion transport kinetics of band 3; iii) blunted A1c production; iv) effectively impeded the over-activation of the endogenous antioxidant enzymes CAT and SOD; and v) significantly prevented the activation of G6PDH. Discussion: These results further contribute to shed light on aging mechanisms in human RBCs and identify bergamot as a functional food rich in natural antioxidants useful for prevention and treatment of oxidative stress-related changes, which may lead to pathological states during aging.

6.
Biomedicines ; 11(6)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37371790

RESUMEN

X-linked deafness (DFNX) is estimated to account for up to 2% of cases of hereditary hearing loss and occurs in both syndromic and non-syndromic forms. POU3F4 is the gene most commonly associated with X-linked deafness (DFNX2, DFN3) and accounts for about 50% of the cases of X-linked non-syndromic hearing loss. This gene codes for a transcription factor of the POU family that plays a major role in the development of the middle and inner ear. The clinical features of POU3F4-related hearing loss include a pathognomonic malformation of the inner ear defined as incomplete partition of the cochlea type 3 (IP-III). Often, a perilymphatic gusher is observed upon stapedectomy during surgery, possibly as a consequence of an incomplete separation of the cochlea from the internal auditory canal. Here we present an overview of the pathogenic gene variants of POU3F4 reported in the literature and discuss the associated clinical features, including hearing loss combined with additional phenotypes such as cognitive and motor developmental delays. Research on the transcriptional targets of POU3F4 in the ear and brain is in its early stages and is expected to greatly advance our understanding of the pathophysiology of POU3F4-linked hearing loss.

9.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614330

RESUMEN

Oxidative stress and immune response play an important role in the development of several cancers, including melanoma. Ion channels are aberrantly expressed in tumour cells and regulate neoplastic transformation, malignant progression, and resistance to therapy. Ion channels are localized in the plasma membrane or other cellular membranes and are targets of oxidative stress, which is particularly elevated in melanoma. At the same time, ion channels are crucial for normal and cancer cell physiology and are subject to multiple layers of regulation, and therefore represent promising targets for therapeutic intervention. In this review, we analyzed the effects of oxidative stress on ion channels on a molecular and cellular level and in the context of melanoma progression and immune evasion. The possible role of ion channels as targets of alternative therapeutic strategies in melanoma was discussed.


Asunto(s)
Canales Iónicos , Melanoma , Humanos , Canales Iónicos/metabolismo , Melanoma/tratamiento farmacológico , Transformación Celular Neoplásica/metabolismo , Inmunidad , Estrés Oxidativo
11.
Front Mol Neurosci ; 15: 999833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245926

RESUMEN

Hearing loss (HL) is the most common sensory defect and affects 450 million people worldwide in a disabling form. Pathogenic sequence alterations in the POU3F4 gene, which encodes a transcription factor, are causative of the most common type of X-linked deafness (X-linked deafness type 3, DFN3, DFNX2). POU3F4-related deafness is characterized by a typical inner ear malformation, namely an incomplete partition of the cochlea type 3 (IP3), with or without an enlargement of the vestibular aqueduct (EVA). The pathomechanism underlying POU3F4-related deafness and the corresponding transcriptional targets are largely uncharacterized. Two male patients belonging to a Caucasian cohort with HL and EVA who presented with an IP3 were submitted to genetic analysis. Two novel sequence variants in POU3F4 were identified by Sanger sequencing. In cell-based assays, the corresponding protein variants (p.S74Afs*8 and p.C327*) showed an aberrant expression and subcellular distribution and lack of transcriptional activity. These two protein variants failed to upregulate the transcript levels of the amino acid transporter gene SLC6A20, which was identified as a novel transcriptional target of POU3F4 by RNA sequencing and RT-qPCR. Accordingly, POU3F4 silencing by siRNA resulted in downregulation of SLC6A20 in mouse embryonic fibroblasts. Moreover, we showed for the first time that SLC6A20 is expressed in the mouse cochlea, and co-localized with POU3F4 in the spiral ligament. The findings presented here point to a novel role of amino acid transporters in the inner ear and pave the way for mechanistic studies of POU3F4-related HL.

12.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232293

RESUMEN

During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 µM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42- uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 µM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Antioxidantes , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antígeno CD47/metabolismo , Eritrocitos/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Metahemoglobina/metabolismo , Estrés Oxidativo , Quercetina/metabolismo , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
J Clin Med ; 11(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36233414

RESUMEN

The SLC26A4 gene, which encodes the anion exchanger pendrin, is involved in determining syndromic (Pendred syndrome) and non-syndromic (DFNB4) autosomal recessive hearing loss. SLC26A4 c.349C>T, p.L117F is a relatively common allele in the Ashkenazi Jewish community, where its minor allele frequency is increased compared to other populations. Although segregation and allelic data support the pathogenicity of this variant, former functional tests showed characteristics that were indistinguishable from those of the wild-type protein. Here, we applied a triad of cell-based assays, i.e., measurement of the ion transport activity by a fluorometric method, determination of the subcellular localization by confocal microscopy, and assessment of protein expression levels, to conclusively assign or exclude the pathogenicity of SLC26A4 p.L117F. This protein variant showed a moderate, but significant, reduction in ion transport function, a partial retention in the endoplasmic reticulum, and a strong reduction in expression levels as a consequence of an accelerated degradation by the Ubiquitin Proteasome System, all supporting pathogenicity. The functional and molecular features of human pendrin p.L117F were recapitulated by the mouse ortholog, thus indicating that a mouse carrying this variant might represent a good model of Pendred syndrome/DFNB4.

14.
Cells ; 11(15)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954235

RESUMEN

Aging is a process characterised by a general decline in physiological functions. The high bioavailability of reactive oxygen species (ROS) plays an important role in the aging rate. Due to the close relationship between aging and oxidative stress (OS), functional foods rich in flavonoids are excellent candidates to counteract age-related changes. This study aimed to verify the protective role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. Markers of OS, including ROS production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, as well as the anion exchange capability through Band 3 protein (B3p) and glycated haemoglobin (A1c) have been analysed in erythrocytes treated with d-Gal for 24 h, with or without pre-incubation for 1 h with 0.5-10 µg/mL Açaì extract. Our results show that the extract avoided the formation of acanthocytes and leptocytes observed after exposure to 50 and 100 mM d-Gal, respectively, prevented d-Gal-induced OS damage, and restored alterations in the distribution of B3p and CD47 proteins. Interestingly, d-Gal exposure was associated with an acceleration of the rate constant of SO42- uptake through B3p, as well as A1c formation. Both alterations have been attenuated by pre-treatment with the Açaì extract. These findings contribute to clarify the aging mechanisms in human erythrocytes and propose functional foods rich in flavonoids as natural antioxidants for the treatment and prevention of OS-related disease conditions.


Asunto(s)
Euterpe , Eritrocitos/metabolismo , Euterpe/metabolismo , Flavonoides/farmacología , Hemoglobina Glucada/metabolismo , Humanos , Estrés Oxidativo , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo
15.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35887126

RESUMEN

Aging is a multi-factorial process developing through a complex net of interactions between biological and cellular mechanisms and it involves oxidative stress (OS) as well as protein glycation. The aim of the present work was to verify the protective role of Quercetin (Q), a polyphenolic flavonoid compound, in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. The anion-exchange capability through the Band 3 protein (B3p) measured by the rate constant of the SO42- uptake, thiobarbituric acid reactive substances (TBARS) levels-a marker of lipid peroxidation-total sulfhydryl (-SH) groups, glycated hemoglobin (A1c), and a reduced glutathione/oxidized glutathione (GSH-GSSG) ratio were determined following the exposure of erythrocytes to 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µM Q. The results confirmed that d-Gal activated OS pathways in human erythrocytes, affecting both membrane lipids and proteins, as denoted by increased TBARS levels and decreased total sulfhydryl groups, respectively. In addition, d-Gal led to an acceleration of the rate constant of the SO42- uptake through the B3p. Both the alteration of the B3p function and oxidative damage have been improved by pre-treatment with Q, which preferentially ameliorated lipid peroxidation rather than protein oxidation. Moreover, Q prevented glycated A1c formation, while no protective effect on the endogenous antioxidant system (GSH-GSSG) was observed. These findings suggest that the B3p could be a novel potential target of antioxidant treatments to counteract aging-related disturbances. Further studies are needed to confirm the possible role of Q in pharmacological strategies against aging.


Asunto(s)
Estrés Oxidativo , Quercetina , Antioxidantes/metabolismo , Antioxidantes/farmacología , Eritrocitos/metabolismo , Galactosa/metabolismo , Galactosa/farmacología , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Quercetina/metabolismo , Quercetina/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
16.
Front Biosci (Landmark Ed) ; 27(2): 75, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35227018

RESUMEN

The transport of chloride and bicarbonate across epithelia controls the pH and volume of the intracellular and luminal fluids, as well as the systemic pH and vascular volume. The anion exchanger pendrin (SLC26A4) and the cystic fibrosis transmembrane conductance regulator (CFTR) channel are expressed in the apical membrane of epithelial cells of various organs and tissues, including the airways, kidney, thyroid, and inner ear. While pendrin drives chloride reabsorption and bicarbonate, thiocyanate or iodide secretion within the apical compartment, CFTR represents a pathway for the apical efflux of chloride, bicarbonate, and possibly iodide. In the airways, pendrin and CFTR seems to be involved in alkalinization of the apical fluid via bicarbonate secretion, especially during inflammation, while CFTR also controls the volume of the apical fluid via a cAMP-dependent chloride secretion, which is stimulated by pendrin. In the kidney, pendrin is expressed in the cortical collecting duct and connecting tubule and co-localizes with CFTR in the apical membrane of ß intercalated cells. Bicarbonate secretion occurs via pendrin, which also drives chloride reabsorption. A functional CFTR is required for pendrin activity. Whether CFTR stimulates pendrin via a direct molecular interaction or other mechanisms, or simply provides a pathway for chloride recycling across the apical membrane remains to be established. In the thyroid, CFTR and pendrin might have overlapping functions in driving the apical flux of iodide within the follicular lumen. In other organs, including the inner ear, the possible functional interplay between pendrin and CFTR needs to be explored.


Asunto(s)
Bicarbonatos , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Bicarbonatos/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Yoduros/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
17.
Acta Physiol (Oxf) ; 235(1): e13796, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143116

RESUMEN

Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl- /HCO3- ) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl- /HCO3- exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress-related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.


Asunto(s)
Bicarbonatos , Proteínas de Transporte de Membrana , Animales , Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Eritrocitos , Mamíferos , Proteínas de Transporte de Membrana/metabolismo , Estrés Oxidativo
18.
Arch Physiol Biochem ; 128(5): 1242-1248, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32401056

RESUMEN

Objective: The impact of acute inflammation, revealed by C-reactive protein (CRP) plasma levels, has been studied on the erythrocytes anion exchanger Band 3 protein.Methods: Anion exchange capability through Band 3 protein, lipid peroxidation, -SH membrane groups and intracellular GSH levels have been measured on erythrocytes from patients with CRP >8 mg/L.Results: Under acute inflammation, a significant increase in anion exchange capability, increased lipid peroxidation, decreased-SH groups and GSH content were observed. Serum CRP levels recovery (after one week) was associated to -SH groups and GSH recovery, but not to anion exchange capability restoration. After 2 months, a total recovery of all parameters was observed.Conclusion: Band 3 protein anion exchange capability is affected by acute inflammation; the accelerated rate of anion exchange may be mainly due to lipid peroxidation, rather than to -SH groups oxidation; erythrocytes renewal could be needed to have a total recover of their function.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Proteína C-Reactiva , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Aniones/metabolismo , Proteína C-Reactiva/metabolismo , Eritrocitos/metabolismo , Humanos , Inflamación/metabolismo , Estrés Oxidativo
19.
J Cell Physiol ; 237(2): 1586-1596, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783011

RESUMEN

Aging, a time-dependent multifaceted process, affects both cell structure and function and involves oxidative stress as well as glycation. The present investigation focuses on the role of the band 3 protein (B3p), an anion exchanger essential to red cells homeostasis, in a d-galactose ( d-Gal)-induced aging model. Anion exchange capability, measured by the rate constant of SO4²- uptake through B3p, levels of lipid peroxidation, oxidation of membrane sulfhydryl groups, B3p expression, methemoglobin, glycated hemoglobin (Hb), and the reduced glutathione/oxidized glutathione ratio were determined after exposure of human erythrocytes to 25, 35, 50, and 100 mmol/L d-Gal for 24 h. Our results show that: (i) in vitro application of d-Gal is useful to model early aging in human erythrocytes; (ii) assessment of B3p ion transport function is a sensitive tool to monitor aging development; (iii) d-Gal leads to Hb glycation and produces substantial changes on the endogenous antioxidant system; (iv) the impact of aging on B3p function proceeds through steps, first involving Hb glycation and then oxidative events at the membrane level. These findings offer a useful tool to understand the mechanisms of aging in human erythrocytes and propose B3p as a possible target for new therapeutic strategies to counteract age-related disturbances.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Galactosa , Envejecimiento , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Eritrocitos/metabolismo , Galactosa/metabolismo , Galactosa/farmacología , Humanos , Estrés Oxidativo
20.
Audiol Res ; 11(3): 423-442, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34562878

RESUMEN

Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of this condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...