Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Proteome Res ; 22(10): 3213-3224, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37641533

RESUMEN

Inflammatory bowel diseases (IBD), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic and relapsing inflammations of the digestive tract with increasing prevalence, yet they have unknown origins or cure. CD and UC have similar symptoms but respond differently to surgery and medication. Current diagnostic tools often involve invasive procedures, while laboratory markers for patient stratification are lacking. Large glycomic studies of immunoglobulin G and total plasma glycosylation have shown biomarker potential in IBD and could help determine disease mechanisms and therapeutic treatment choice. Hitherto, the glycosylation signatures of plasma immunoglobulin A, an important immunoglobulin secreted into the intestinal mucin, have remained undetermined in the context of IBD. Our study investigated the associations of immunoglobulin A1 and A2 glycosylation with IBD in 442 IBD cases (188 CD and 254 UC) and 120 healthy controls by reversed-phase liquid chromatography electrospray-ionization mass spectrometry of tryptic glycopeptides. Differences of IgA O- and N-glycosylation (including galactosylation, bisection, sialylation, and antennarity) between patient groups were associated with the diseases, and these findings led to the construction of a statistical model to predict the disease group of the patients without the need of invasive procedures. This study expands the current knowledge about CD and UC and could help in the development of noninvasive biomarkers and better patient care.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/epidemiología , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/epidemiología , Glicosilación , Inmunoglobulina A , Biomarcadores
2.
iScience ; 26(7): 107021, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485378

RESUMEN

Visceral leishmaniasis (VL) is a clinical form of leishmaniasis with high mortality rates when not treated. Diagnosis suffers from invasive techniques and sub-optimal sensitivities. The current (affordable) treatment with pentavalent antimony as advised by the WHO is possibly harmful to the patient. There is need for an improved diagnosis to prevent possibly unnecessary treatment. N-glycan analysis may aid in diagnosis. We evaluated the N-glycan profiles from active VL, asymptomatic infections (ASYMP) and controls from non-endemic (NC) and endemic (EC) areas. Active VL has a distinct N-glycome profile that associates with disease severity. Our study suggests that the observed glycan signatures could be a valuable additive to diagnosis and assist in identifying possible markers of disease and understanding the pathogenesis of VL. Further studies are warranted to assess a possible future role of blood glycome analysis in active VL diagnosis and should aim at disease specificity.

3.
Diabetes Metab Res Rev ; 39(7): e3685, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37422864

RESUMEN

AIMS/HYPOTHESIS: Inflammation is important in the development of type 2 diabetes complications. The N-glycosylation of IgG influences its role in inflammation. To date, the association of plasma IgG N-glycosylation with type 2 diabetes complications has not been extensively investigated. We hypothesised that N-glycosylation of IgG may be related to the development of complications of type 2 diabetes. METHODS: In three independent type 2 diabetes cohorts, plasma IgG N-glycosylation was measured using ultra performance liquid chromatography (DiaGene n = 1815, GenodiabMar n = 640) and mass spectrometry (Hoorn Diabetes Care Study n = 1266). We investigated the associations of IgG N-glycosylation (fucosylation, galactosylation, sialylation and bisection) with incident and prevalent nephropathy, retinopathy and macrovascular disease using Cox- and logistic regression, followed by meta-analyses. The models were adjusted for age and sex and additionally for clinical risk factors. RESULTS: IgG galactosylation was negatively associated with prevalent and incident nephropathy and macrovascular disease after adjustment for clinical risk factors. Sialylation was negatively associated with incident diabetic nephropathy after adjustment for clinical risk factors. For incident retinopathy, similar associations were found for galactosylation, adjusted for age and sex. CONCLUSIONS: We showed that IgG N-glycosylation, particularly galactosylation and to a lesser extent sialylation, is associated with a higher prevalence and future development of macro- and microvascular complications of diabetes. These findings indicate the predictive potential of IgG N-glycosylation in diabetes complications and should be analysed further in additional large cohorts to obtain the power to solidify these conclusions.

4.
Anal Chem ; 94(12): 4979-4987, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35293727

RESUMEN

Bacterial glycoconjugate vaccines have a major role in preventing microbial infections. Immunogenic bacterial glycans, such as O-antigen polysaccharides, can be recombinantly expressed and combined with specific carrier proteins to produce effective vaccines. O-Antigen polysaccharides are typically polydisperse, and carrier proteins can have multiple glycosylation sites. Consequently, recombinant glycoconjugate vaccines have a high structural heterogeneity, making their characterization challenging. Since development and quality control processes rely on such characterization, novel strategies are needed for faster and informative analysis. Here, we present a novel approach employing minimal sample preparation and ultrahigh-resolution mass spectrometry analysis for protein terminal sequencing and characterization of the oligosaccharide repeat units of bacterial glycoconjugate vaccines. Three glycoconjugate vaccine candidates, obtained from the bioconjugation of the O-antigen polysaccharides from E. coli serotypes O2, O6A, and O25B with the genetically detoxified exotoxin A from Pseudomonas aeruginosa, were analyzed by MALDI-in-source decay (ISD) FT-ICR MS. Protein and glycan ISD fragment ions were selectively detected using 1,5-diaminonaphtalene and a 2,5-dihydroxybenzoic acid/2-hydroxy-5-methoxybenzoic acid mixture (super-DHB) as a MALDI matrix, respectively. The analysis of protein fragments required the absence of salts in the samples, while the presence of salt was key for the detection of sodiated glycan fragments. MS/MS analysis of O-antigen ISD fragments allowed for the detection of specific repeat unit signatures. The developed strategy requires minute sample amounts, avoids the use of chemical derivatizations, and comes with minimal hands-on time allowing for fast corroboration of key structural features of bacterial glycoconjugate vaccines during early- and late-stage development.


Asunto(s)
Vacunas contra Escherichia coli , Escherichia coli/metabolismo , Vacunas contra Escherichia coli/metabolismo , Antígenos O , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem
5.
Artículo en Inglés | MEDLINE | ID: mdl-34645615

RESUMEN

INTRODUCTION: Although associations of total plasma N-glycome (TPNG) with type 2 diabetes have been reported, little is known on the role of TPNG in type 2 diabetes complications, a major cause of type 2 diabetes-related morbidity and mortality. Here, we assessed TPNG in relation to type 2 diabetes complications in subsamples of two Dutch cohorts using mass spectrometry (n=1815 in DiaGene and n=1518 in Hoorn Diabetes Care System). RESEARCH DESIGN AND METHODS: Blood plasma samples and technical replicates were pipetted into 96-well plates in a randomized manner. Peptide:N-glycosidase F (PNGase F) was used to release N-glycans, whereafter sialic acids were derivatized for stabilization and linkage differentiation. After total area normalization, 68 individual glycan compositions were quantified in total and were used to calculate 45 derived traits which reflect structural features of glycosylation. Associations of glycan features with prevalent and incident microvascular or macrovascular complications were tested in logistic and Cox regression in both independent cohorts and the results were meta-analyzed. RESULTS: Our results demonstrated similarities between incident and prevalent complications. The strongest association for prevalent cardiovascular disease was a high level of bisection on a group of diantennary glycans (A2FS0B; OR=1.38, p=1.34×10-11), while for prevalent nephropathy the increase in 2,6-sialylation on triantennary glycans was most pronounced (A3E; OR=1.28, p=9.70×10-6). Several other TPNG features, including fucosylation, galactosylation, and sialylation, firmly demonstrated associations with prevalent and incident complications of type 2 diabetes. CONCLUSIONS: These findings may provide a glance on how TPNG patterns change before complications emerge, paving the way for future studies on prediction biomarkers and potentially disease mechanisms.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedades de la Retina , Proteínas Sanguíneas , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Diabetes Mellitus Tipo 2/complicaciones , Glicosilación , Humanos , Plasma
6.
J Am Soc Nephrol ; 32(10): 2455-2465, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34127537

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and is a leading cause of renal failure. The disease mechanisms are not completely understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in IgAN pathogenesis. Although both types of human IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited detail is known about IgA O- and N-glycosylation in IgAN. METHODS: To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, we used liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA from 83 patients with IgAN and 244 age- and sex-matched healthy controls. RESULTS: Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN and glomerular function in our cross-sectional study. These features included differences in galactosylation, sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA. CONCLUSIONS: Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease prediction and deteriorating kidney function.


Asunto(s)
Galactosa/metabolismo , Glomerulonefritis por IGA/sangre , Inmunoglobulina A/metabolismo , Adulto , Estudios de Casos y Controles , Cromatografía Liquida , Estudios Transversales , Femenino , Galactosa/química , Tasa de Filtración Glomerular , Glomerulonefritis por IGA/fisiopatología , Glicopéptidos/análisis , Glicosilación , Humanos , Inmunoglobulina A/química , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química
7.
Front Chem ; 9: 678883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026735

RESUMEN

Apolipoprotein-CIII (apo-CIII) is a glycoprotein involved in lipid metabolism and its levels are associated with cardiovascular disease risk. Apo-CIII sialylation is associated with improved plasma triglyceride levels and its glycosylation may have an effect on the clearance of triglyceride-rich lipoproteins by directing these particles to different metabolic pathways. Large-scale sample cohort studies are required to fully elucidate the role of apo-CIII glycosylation in lipid metabolism and associated cardiovascular disease. In this study, we revisited a high-throughput workflow for the analysis of intact apo-CIII by ultrahigh-resolution MALDI FT-ICR MS. The workflow includes a chemical oxidation step to reduce methionine oxidation heterogeneity and spectrum complexity. Sinapinic acid matrix was used to minimize the loss of sialic acids upon MALDI. MassyTools software was used to standardize and automate MS data processing and quality control. This method was applied on 771 plasma samples from individuals without diabetes allowing for an evaluation of the expression levels of apo-CIII glycoforms against a panel of lipid biomarkers demonstrating the validity of the method. Our study supports the hypothesis that triglyceride clearance may be regulated, or at least strongly influenced by apo-CIII sialylation. Interestingly, the association of apo-CIII glycoforms with triglyceride levels was found to be largely independent of body mass index. Due to its precision and throughput, the new workflow will allow studying the role of apo-CIII in the regulation of lipid metabolism in various disease settings.

8.
Cancer Med ; 9(22): 8519-8529, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32898301

RESUMEN

BACKGROUND &AIMS: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer type with loco-regional spread that makes the tumor surgically unresectable. Novel diagnostic tools are needed to improve detection of PDAC and increase patient survival. In this study we explore serum protein N-glycan profiles from PDAC patients with regard to their applicability to serve as a disease biomarker panel. METHODS: Total serum N-glycome analysis was applied to a discovery set (86 PDAC cases/84 controls) followed by independent validation (26 cases/26 controls) using in-house collected serum specimens. Protein N-glycan profiles were obtained using ultrahigh resolution mass spectrometry and included linkage-specific sialic acid information. N-glycans were relatively quantified and case-control classification performance was evaluated based on glycosylation traits such as branching, fucosylation, and sialylation. RESULTS: In PDAC patients a higher level of branching (OR 6.19, P-value 9.21 × 10-11 ) and (antenna)fucosylation (OR 13.27, P-value 2.31 × 10-9 ) of N-glycans was found. Furthermore, the ratio of α2,6- vs α2,3-linked sialylation was higher in patients compared to healthy controls. A classification model built with three glycosylation traits was used for discovery (AUC 0.88) and independent validation (AUC 0.81), with sensitivity and specificity values of 0.85 and 0.71 for the discovery set and 0.75 and 0.72 for the validation set. CONCLUSION: Serum N-glycome analysis revealed glycosylation differences that allow classification of PDAC patients from healthy controls. It was demonstrated that glycosylation traits rather than single N-glycan structures obtained in this clinical glycomics study can serve as a basis for further development of a blood-based diagnostic test.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/sangre , Glicómica , Glicoproteínas/sangre , Neoplasias Pancreáticas/sangre , Anciano , Carcinoma Ductal Pancreático/diagnóstico , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Femenino , Glicosilación , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Neoplasias Pancreáticas/diagnóstico , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
9.
Artículo en Inglés | MEDLINE | ID: mdl-32616483

RESUMEN

INTRODUCTION: Recent studies revealed N-glycosylation signatures of type 2 diabetes, inflammation and cardiovascular risk factors. Most people with diabetes use medication to reduce cardiovascular risk. The association of these medications with the plasma N-glycome is largely unknown. We investigated the associations of metformin, statin, ACE inhibitor/angiotensin II receptor blocker (ARB), sulfonylurea (SU) derivatives and insulin use with the total plasma N-glycome in type 2 diabetes. RESEARCH DESIGN AND METHODS: After enzymatic release from glycoproteins, N-glycans were measured by matrix-assisted laser desorption/ionization mass spectrometry in the DiaGene (n=1815) and Hoorn Diabetes Care System (n=1518) cohorts. Multiple linear regression was used to investigate associations with medication, adjusted for clinical characteristics. Results were meta-analyzed and corrected for multiple comparisons. RESULTS: Metformin and statins were associated with decreased fucosylation and increased galactosylation and sialylation in glycans unrelated to immunoglobulin G. Bisection was increased within diantennary fucosylated non-sialylated glycans, but decreased within diantennary fucosylated sialylated glycans. Only few glycans were associated with ACE inhibitor/ARBs, while none associated with insulin and SU derivative use. CONCLUSIONS: We conclude that metformin and statins associate with a total plasma N-glycome signature in type 2 diabetes. Further studies are needed to determine the causality of these relations, and future N-glycomic research should consider medication a potential confounder.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Metformina , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Proteínas Sanguíneas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glicosilación , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Metformina/uso terapéutico
10.
Anal Chem ; 92(6): 4518-4526, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32091889

RESUMEN

Immunoglobulin (Ig) glycosylation is recognized for its influence on Ig turnover and effector functions. However, the large-scale profiling of Ig glycosylation in a biomedical setting is challenged by the existence of different Ig isotypes and subclasses, their varying serum concentrations, and the presence of multiple glycosylation sites per Ig. Here, a high-throughput nanoliquid chromatography (LC)- mass spectrometry (MS)-based method for simultaneous analysis of IgG and IgA glycopeptides was developed and applied on a serum sample set from 185 healthy donors. Sample preparation from minute amounts of serum was performed in 96-well plate format. Prior to trypsin digestion, IgG and IgA were enriched simultaneously, followed by a one-step denaturation, reduction, and alkylation. The obtained nanoLC-MS data were subjected to semiautomated, targeted feature integration and quality control. The combined and simplified protocol displayed high overall method repeatability, as assessed using pooled plasma and serum standards. Taking all samples together, 143 individual N- and O-glycopeptides were reliably quantified. These glycopeptides were attributable to 11 different peptide backbones, derived from IgG1, IgG2/3, IgG4, IgA1, IgA2, and the joining chain from dimeric IgA. Using this method, novel associations were found between IgA N- and O-glycosylation and age. Furthermore, previously reported associations of IgG Fc glycosylation with age in healthy individuals were confirmed. In conclusion, the new method paves the way for high-throughput multiprotein plasma glycoproteomics.


Asunto(s)
Glicopéptidos/sangre , Ensayos Analíticos de Alto Rendimiento , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Femenino , Voluntarios Sanos , Humanos , Masculino
11.
FEBS Lett ; 593(21): 2966-2976, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31509238

RESUMEN

N-glycome analysis in total plasma or serum yields information about the levels and glycosylation patterns of major plasma glycoproteins, including immunoglobulins, acute-phase proteins, and apolipoproteins. Until recently, glycomic studies in disease settings largely suffered from small cohort sizes, poor analytical resolution, and poor comparability of results owing to the diversity of analytical techniques. Here, we report on recent advances in high-throughput mass spectrometry glycomics technology that enabled elucidation of N-glycome signatures in the plasma of patients with type 2 diabetes, inflammatory bowel disease, or colorectal cancer. Use of this technology revealed both commonalities and differences among disease fingerprints. Moreover, we summarize findings on glycomic signatures associated with age, sex, and body mass index. High-throughput, high-resolution glycomics technologies, together with robust data analysis workflows, will advance clinical translation.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glicómica/métodos , Enfermedades Inflamatorias del Intestino/metabolismo , Plasma/metabolismo , Biomarcadores/sangre , Glicoproteínas/sangre , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectrometría de Masas
12.
Front Immunol ; 9: 2436, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405629

RESUMEN

The N-glycosylation of immunoglobulin (Ig) G, the major antibody in the circulation of human adults, is well known for its influence on antibody effector functions and its alterations with various diseases. In contrast, knowledge on the role of glycans attached to IgA, which is a key immune defense agent in secretions, is very scarce. In this study we aimed to characterize the glycosylation of salivary (secretory) IgA, including the IgA joining chain (JC), and secretory component (SC) and to compare IgA and IgG glycosylation between human plasma and saliva samples to gain a first insight into oral cavity-specific antibody glycosylation. Plasma and whole saliva were collected from 19 healthy volunteers within a 2-h time window. IgG and IgA were affinity-purified from the two biofluids, followed by tryptic digestion and nanoLC-ESI-QTOF-MS(/MS) analysis. Saliva-derived IgG exhibited a slightly lower galactosylation and sialylation as compared to plasma-derived IgG. Glycosylation of IgA1, IgA2, and the JC showed substantial differences between the biofluids, with salivary proteins exhibiting a higher bisection, and lower galactosylation and sialylation as compared to plasma-derived IgA and JC. Additionally, all seven N-glycosylation sites, characterized on the SC of secretory IgA in saliva, carried highly fucosylated and fully galactosylated diantennary N-glycans. This study lays the basis for future research into the functional role of salivary Ig glycosylation as well as its biomarker potential.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Glicómica , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Pruebas Inmunológicas/métodos , Saliva/metabolismo , Adulto , Biomarcadores/metabolismo , Proteínas Sanguíneas/química , Femenino , Glicosilación , Voluntarios Sanos , Humanos , Inmunoglobulina A/química , Inmunoglobulina G/química , Masculino , Adulto Joven
13.
Biochim Biophys Acta Gen Subj ; 1862(12): 2613-2622, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30251656

RESUMEN

BACKGROUND: Little is known about enzymatic N-glycosylation in type 2 diabetes, a common posttranslational modification of proteins influencing their function and integrating genetic and environmental influences. We sought to gain insights into N-glycosylation to uncover yet unexplored pathophysiological mechanisms in type 2 diabetes. METHODS: Using a high-throughput MALDI-TOF mass spectrometry method, we measured N-glycans in plasma samples of the DiaGene case-control study (1583 cases and 728 controls). Associations were investigated with logistic regression and adjusted for age, sex, body mass index, high-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol, and smoking. Findings were replicated in a nested replication cohort of 232 cases and 108 controls. RESULTS: Eighteen glycosylation features were significantly associated with type 2 diabetes. Fucosylation and bisection of diantennary glycans were decreased in diabetes (odds ratio (OR) = 0.81, p = 1.26E-03, and OR = 0.87, p = 2.84E-02, respectively), whereas total and, specifically, alpha2,6-linked sialylation were increased (OR = 1.38, p = 9.92E-07, and OR = 1.40, p = 5.48E-07). Alpha2,3-linked sialylation of triantennary glycans was decreased (OR = 0.60, p = 6.38E-11). CONCLUSIONS: While some glycosylation changes were reflective of inflammation, such as increased alpha2,6-linked sialylation, our finding of decreased alpha2,3-linked sialylation in type 2 diabetes patients is contradictory to reports on acute and chronic inflammation. Thus, it might have previously unreported immunological implications in type 2 diabetes. GENERAL SIGNIFICANCE: This study provides new insights into N-glycosylation patterns in type 2 diabetes, which can fuel studies on causal mechanisms and consequences of this complex disease.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Diabetes Mellitus Tipo 2/sangre , Polisacáridos/metabolismo , Anciano , Femenino , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Gastroenterology ; 155(3): 829-843, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29792883

RESUMEN

BACKGROUND & AIMS: Biomarkers are needed for early detection of Crohn's disease (CD) and ulcerative colitis (UC) or to predict patient outcomes. Glycosylation is a common and complex posttranslational modification of proteins that affects their structure and activity. We compared plasma N-glycosylation profiles between patients with CD or UC and healthy individuals (controls). METHODS: We analyzed the total plasma N-glycomes of 2635 patients with inflammatory bowel diseases and 996 controls by mass spectrometry with a linkage-specific sialic acid derivatization technique. Plasma samples were acquired from 2 hospitals in Italy (discovery cohort, 1989 patients with inflammatory bowel disease [IBD] and 570 controls) and 1 medical center in the United States (validation cohort, 646 cases of IBD and 426 controls). Sixty-three glycoforms met our criteria for relative quantification and were extracted from the raw data with the software MassyTools. Common features shared by the glycan compositions were combined in 78 derived traits, including the number of antennae of complex-type glycans and levels of fucosylation, bisection, galactosylation, and sialylation. Associations of plasma N-glycomes with age, sex, CD, UC, and IBD-related parameters such as disease location, surgery and medication, level of C-reactive protein, and sedimentation rate were tested by linear and logistic regression. RESULTS: Plasma samples from patients with IBD had a higher abundance of large-size glycans compared with controls, a decreased relative abundance of hybrid and high-mannose structures, lower fucosylation, lower galactosylation, and higher sialylation (α2,3- and α2,6-linked). We could discriminate plasma from patients with CD from that of patients with UC based on higher bisection, lower galactosylation, and higher sialylation (α2,3-linked). Glycosylation patterns were associated with disease location and progression, the need for a more potent medication, and surgery. These results were replicated in a large independent cohort. CONCLUSIONS: We performed high-throughput analysis to compare total plasma N-glycomes of individuals with vs without IBD and to identify patterns associated with disease features and the need for treatment. These profiles might be used in diagnosis and for predicting patients' responses to treatment.


Asunto(s)
Colitis Ulcerosa/sangre , Enfermedad de Crohn/sangre , Polisacáridos/sangre , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Colitis Ulcerosa/diagnóstico , Enfermedad de Crohn/diagnóstico , Progresión de la Enfermedad , Femenino , Glicosilación , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Procesamiento Proteico-Postraduccional
15.
Sci Rep ; 8(1): 979, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343697

RESUMEN

Mass spectrometric glycomics was used as an innovative approach to identify biomarkers in serum and dialysate samples from peritoneal dialysis (PD) patients. PD is a life-saving treatment worldwide applied in more than 100,000 patients suffering from chronic kidney disease. PD treatment uses the peritoneum as a natural membrane to exchange waste products from blood to a glucose-based solution. Daily exposure of the peritoneal membrane to these solutions may cause complications such as peritonitis, fibrosis and inflammation which, in the long term, lead to the failure of the treatment. It has been shown in the last years that protein N-glycosylation is related to inflammatory and fibrotic processes. Here, by using a recently developed MALDI-TOF-MS method with linkage-specific sialic acid derivatisation, we showed that alpha2,6-sialylation, especially in triantennary N-glycans from peritoneal effluents, is associated with critical clinical outcomes in a prospective cohort of 94 PD patients. Moreover, we found an association between the levels of presumably immunoglobulin-G-related glycans as well as galactosylation of diantennary glycans with PD-related complications such as peritonitis and loss of peritoneal mesothelial cell mass. The observed glycomic changes point to changes in protein abundance and protein-specific glycosylation, representing candidate functional biomarkers of PD and associated complications.


Asunto(s)
Transporte Biológico/fisiología , Proteínas Sanguíneas/metabolismo , Inflamación/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Peritoneo/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Soluciones para Diálisis/metabolismo , Femenino , Fibrosis/sangre , Fibrosis/metabolismo , Glucosa/metabolismo , Glicosilación , Humanos , Inflamación/sangre , Masculino , Persona de Mediana Edad , Diálisis Peritoneal/métodos , Peritonitis/sangre , Peritonitis/metabolismo , Estudios Prospectivos
16.
Glycobiology ; 26(12): 1308-1316, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27613801

RESUMEN

Beneficial effects have been proposed for human milk oligosaccharides (HMO), as deduced from in vitro and animal studies. To date, in vivo evidence of the link between certain oligosaccharide structures in milk and their consumption by infant gut microbiota is still missing, although likely. Whereas many studies have described HMO patterns in human milk from larger cohorts, data on the excretion of HMO and possible metabolites produced in the infant gut are still very limited. From smaller-scale studies, an age-dependency according to infant gut maturation and microbiota adaptation has previously been hypothesized. To further investigate this, we profiled neutral fecal oligosaccharides from term-born infants who were exclusively breastfed, formula-fed or mixed-fed at the age of 2 months, and from a follow-up of a subgroup at 7 months of age (INFABIO study). Data on maternal antibiotic exposure was also included. Automated matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analyses revealed the presence of HMO and metabolites in the feces of most, but not all breastfed infants at 2 months, with highly varying patterns that appeared not to differ with maternal antibiotics exposure. Formula-fed infants at 2 months and most of the breastfed infants at 7 months did not excrete HMO-like structures in their feces, the latter corresponding to the hypothesis of age-dependency. Together with our previous results that were partly contradictory to what has been proposed by others, here, we suggest alternative explanations for the described association of oligosaccharide excretion with age and feeding type in infants below 7 months of age.


Asunto(s)
Lactancia Materna , Heces/química , Fórmulas Infantiles/química , Leche Humana/química , Oligosacáridos/química , Humanos , Lactante
17.
Biochim Biophys Acta ; 1860(8): 1596-607, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26748235

RESUMEN

BACKGROUND: A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide structures which may be conjugated to lipids or proteins. They are known to be important recognition motifs not only in the context of blood transfusions, but also in infection and cancer development. SCOPE OF REVIEW: Current knowledge on the molecular background and the implication of histo-blood group glycans in the prevention and therapy of infectious and non-communicable diseases, such as cancer and cardiovascular disease, is presented. MAJOR CONCLUSIONS: Glycan-based histo-blood groups are associated with intestinal microbiota composition, the risk of various diseases as well as therapeutic success of, e.g., vaccination. Their potential as prebiotic or anti-microbial agents, as disease biomarkers and vaccine targets should be further investigated in future studies. For this, recent and future technological advancements will be of particular importance, especially with regard to the unambiguous structural characterization of the glycan portion in combination with information on the protein and lipid carriers of histo-blood group-active glycans in large cohorts. GENERAL SIGNIFICANCE: Histo-blood group glycans have a unique linking position in the complex network of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly promising targets for novel approaches in the field of personalized medicine. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Enfermedades Cardiovasculares , Antígenos del Grupo Sanguíneo de Lewis , Neoplasias , Oligosacáridos , Medicina de Precisión/métodos , Sistema del Grupo Sanguíneo ABO/genética , Sistema del Grupo Sanguíneo ABO/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Humanos , Antígenos del Grupo Sanguíneo de Lewis/genética , Antígenos del Grupo Sanguíneo de Lewis/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Oligosacáridos/genética , Oligosacáridos/metabolismo
18.
Mol Nutr Food Res ; 59(2): 355-64, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25330044

RESUMEN

SCOPE: Various biological effects have been postulated for human milk oligosaccharides (HMO), as deduced from in vitro, animal, and epidemiological studies. Little is known about their metabolic fate in vivo in the breast-fed infant, which is presented here. METHODS AND RESULTS: Human milk and infant urine and feces were collected from ten mother-child pairs and analyzed by MALDI-TOF MS (/MS), accompanied by high-performance anion-exchange chromatography with pulsed amperometric detection. Previously, we detected intact small and complex HMO in infant urine, which had been absorbed from gut, as verified via intrinsic (13) C-labeling. Our current work reveals the presence of novel HMO metabolites in urine and feces of breast-fed infants. The novel metabolites were identified as acetylated HMOs and other HMO-like structures, produced by the infants or by their gut microbiota. The finding of secretor- or Lewis-specific HMO in the feces/urine of infants fed with nonsecretor or Lewis-negative milk suggested a correspondent modification in the infant. CONCLUSION: Our study reveals new insights into the metabolism of neutral HMO in exclusively breast-fed infants and provides further indications for multiple factors influencing HMO metabolism and functions that should be considered in future in vivo investigations.


Asunto(s)
Lactancia Materna , Leche Humana/química , Oligosacáridos/administración & dosificación , Oligosacáridos/orina , Acetilación , Cromatografía Líquida de Alta Presión , Heces/química , Femenino , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Microbiota , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
19.
mBio ; 5(6): e01844, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25467439

RESUMEN

UNLABELLED: Visceral leishmaniasis (VL) has a high fatality rate if not treated; nevertheless, the majority of human infections with the causative agent, Leishmania infantum chagasi, are asymptomatic. Although VL patients often present with increased levels of serum immunoglobulins, the contribution of antibodies to resistance or progression to disease remains unknown. Effector and regulatory functions of antibodies rely on their interactions with type I and II Fc receptors, and these interactions are tuned by the patterns of antibody Fc N-glycosylation. In view of these facts, we applied a robust method of IgG Fc N-glycopeptide profiling of serum samples from 187 patients with VL, 177 asymptomatic individuals, 116 endemic controls (individuals residing in areas where VL is endemic) and 43 nonendemic controls (individuals living in an area where VL is not endemic). We show that, in comparison to the overall IgG Fc N-glycan profiles of asymptomatic or uninfected healthy individuals, those of patients with VL are profoundly altered. These changes correlate with levels of serum cytokines and the inflammation marker C-reactive protein. We also fitted univariate and multivariate ordinal logistic regression models to demonstrate the ability of IgG Fc N-glycosylation features and immunity regulators present in serum to predict disease severity in VL patients. Importantly, we show that Fc N-glycosylation profiles change after treatment of VL. This study introduces important concepts contributing to the understanding of antibody responses in infections with Leishmania parasites and provides new insights into the pathology of human VL. IMPORTANCE: Immunoglobulins (Ig) have been shown to present pro- and anti-inflammatory functions according to the profile of carbohydrates attached to their Fc region. Glycosylation features of serum IgG have been examined in relation to several autoimmune and infectious diseases and provide a mechanistic basis for the protective or pathogenic role of antibodies. Leishmania infantum chagasi is the causative agent of visceral leishmaniasis (VL) in South America, and we show that VL patients produce IgG with patterns of Fc glycans similar to those found in other inflammatory conditions. Specific Fc N-glycosylation features and levels of serum cytokines and C-reactive protein are significantly associated with the development of severe clinical symptoms and, notably, Fc glycosylation changes after treatment. The modifications detected in the N-glycosylation features of IgG Fc from VL patients raise new perspectives on the effector or regulatory role of antibodies in immune responses elicited by infection with Leishmania parasites.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/metabolismo , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Leishmaniasis Visceral/patología , Procesamiento Proteico-Postraduccional , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/química , Proteína C-Reactiva/análisis , Citocinas/sangre , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/sangre , Inmunoglobulina G/química
20.
Glycobiology ; 24(2): 185-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24253766

RESUMEN

Human milk oligosaccharides (HMOs) have been paid much attention due to their beneficial effects observed in vitro, e.g., prebiotic, anti-infective and anti-inflammatory properties. However, in vivo investigations with regard to HMO metabolism and functions are rare. The few data available indicate that HMOs are absorbed to a low extent and excreted via urine without noteworthy modifications, whereas the major proportion reaches infant's colon undigested. Via intrinsic (13)C-labeling of HMOs during their biosynthesis in the mammary gland of 10 lactating women, we were able to follow the fate of (13)C-labeled oligosaccharides (OSs) from their secretion in milk to the excretion in the urine of their breastfed infants. To a certain extent, we could therefore discriminate between original HMOs and non-labeled OSs derived from degradation of HMOs or endogenous glycoconjugates. By means of our novel, rapid, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based approach, we found a homogeneous time pattern of isotopomer enrichment in milk among all subjects and between single OS species. In contrast, the time curves from infants' urine varied strongly between individuals and OS species, though the overall MALDI-TOF MS profile resembled those of the mothers' milk. Our data suggest that neutral HMOs might be processed and/or utilized differentially after or upon absorption from the gut, as deduced from their structure-dependent variation in the extent of tracer enrichment and in the retention times in infant's organism. This sheds new light on the role of HMOs within infant's body, beyond the intestine and its microbiota alone.


Asunto(s)
Lactancia Materna , Lactancia/metabolismo , Leche Humana/química , Oligosacáridos/química , Oligosacáridos/metabolismo , Secuencia de Carbohidratos , Isótopos de Carbono/farmacocinética , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Individualidad , Recién Nacido , Intestinos/química , Leche Humana/metabolismo , Datos de Secuencia Molecular , Oligosacáridos/orina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Urinálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...