Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Imaging Inform Med ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491235

RESUMEN

Radiofrequency ablation (RFA) is the treatment of choice for atrial fibrillation (AF). Additionally, the utilization of 3D printing for cardiac models offers an in-depth insight into cardiac anatomy and cardiovascular diseases. The study aims to evaluate the clinical utility and outcomes of RFA following in vitro visualization of the left atrium (LA) and pulmonary vein (PV) structures via 3D printing (3DP). Between November 2017 and April 2021, patients who underwent RFA at the First Affiliated Hospital of Xinxiang Medical University were consecutively enrolled and randomly allocated into two groups: the 3DP group and the control group, in a 1:1 ratio. Computed tomography angiography (CTA) was employed to capture the morphology and diameter of the LA and PV, which facilitated the construction of a 3D entity model. Additionally, surgical procedures were simulated using the 3D model. Parameters such as the duration of the procedure, complications, and rates of RFA recurrence were meticulously documented. Statistical analysis was performed using the t-test or Mann-Whitney U test to evaluate the differences between the groups, with a P-value of less than 0.05 considered statistically significant. In this study, a total of 122 patients were included, with 53 allocated to the 3DP group and 69 to the control group. The analysis of the morphological measurements of the LA and PV taken from the workstation or direct entity measurement showed no significant difference between the two groups (P > 0.05). However, patients in the 3DP group experienced significantly shorter RFA times (97.03 ± 28.39 compared to 120.51 ± 44.76 min, t = 3.05, P = 0.003), reduced duration of radiation exposure (2.55 [interquartile range 2.01, 3.24] versus 3.20 [2.28, 3.91] min, Z = 3.23, P < 0.001), and shorter modeling times (7.68 ± 1.03 compared to 8.89 ± 1.45 min, t = 5.38, P < 0.001). 3DP technology has the potential to enhance standard RFA practices by reducing the time required for intraoperative interventions and exposure to radiation.

2.
BMC Med Educ ; 18(1): 183, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30071844

RESUMEN

BACKGROUND: There are two parts included in traditional imaging diagnosis teaching: theoretical lessons and experimental lessons. Most of the time, the experimental lesson is a review of the theoretical lesson. The teacher is the centre of the course and students are passive learners. Thus, in this study we included the patient problem of the imaging centre in our imaging diagnosis education. The traditional theoretical lessen was used to discuss prior knowledge, the discussion and analysis of patient problems was arranged under class, and the experimental lesson was used to synthesize and test the newly acquired information. The aim of this study is to determine whether or not integration of problem- and lecture-based learning teaching modes in imaging diagnosis education was associated with a good teaching effect. Forty-six of sixty students (76.7%) like integrated problem- and lecture-based learning teaching mode and 53 of 60 students (88.3%) think that integrated problem- and lecture-based learning teaching mode can make their ability of self-study be improved. METHODS: Sixty students participated in a prospective study with a two-phase cross-over design. All of the students were divided into 2 groups of 30 each. In the first term, the first group participated in an integration of the problem- and lecture-based learning teaching mode, whereas students in the second group underwent the lecture-based learning teaching mode alone. During the second term, the teaching modes were exchanged between the two groups. A close-exam and survey were used to evaluate the teaching effect, and the data were analysed means of analysis of variance with a two-phase cross-over design and a χ2 test with a 2-tailed α of 0.05. RESULTS: There was a statistically significant difference in the test scores between the integration of the problem- and lecture-based learning teaching mode and the lecture-based learning teaching mode alone (P < 0.05). The integration of problem- and lecture-based learning teaching mode was well-appraised. CONCLUSION: Integration of the problem- and lecture-based learning teaching modes in teaching imaging diagnosis education resulted in a good teaching effect.


Asunto(s)
Diagnóstico por Imagen , Aprendizaje Basado en Problemas , Enseñanza , Estudios Cruzados , Evaluación Educacional , Humanos , Aprendizaje , Proyectos Piloto , Estudios Prospectivos , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...