Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269874

RESUMEN

C2H2 zinc finger is one of the most common motifs found in the transcription factors (TFs) in eukaryotes organisms, which have a broad range of functions, such as regulation of growth and development, stress tolerance and pathogenicity. Here, PlCZF1 was identified to encode a C2H2 zinc finger in the litchi downy blight pathogen Peronophythora litchii. PlCZF1 is conserved in P. litchii and Phytophthora species. In P. litchii, PlCZF1 is highly expressed in sexual developmental and early infection stages. We generated Δplczf1 mutants using the CRISPR/Cas9 method. Compared with the wild type, the Δplczf1 mutants showed no significant difference in vegetative growth and asexual reproduction, but were defective in oospore development and virulence. Further experiments revealed that the transcription of PlM90, PlLLP and three laccase encoding genes were down-regulated in the Δplczf1 mutant. Our results demonstrated that PlCZF1 is a vital regulator for sexual development and pathogenesis in P. litchii.


Asunto(s)
Litchi , Phytophthora , Litchi/genética , Enfermedades de las Plantas/genética , Virulencia/genética , Dedos de Zinc
2.
Phys Rev Lett ; 125(7): 077002, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857570

RESUMEN

Identifying the essence of doped Mott insulators is one of the major outstanding problems in condensed matter physics and the key to understanding the high-temperature superconductivity in cuprates. We report real space visualization of Mott insulator-metal transition in Sr_{1-x}La_{x}CuO_{2+y} cuprate films that cover both the electron- and hole-doped regimes. Tunneling conductance measurements directly on the copper-oxide (CuO_{2}) planes reveal a systematic shift in the Fermi level, while the fundamental Mott-Hubbard band structure remains unchanged. This is further demonstrated by exploring the atomic-scale electronic response of CuO_{2} to substitutional dopants and intrinsic defects in a sister compound Sr_{0.92}Nd_{0.08}CuO_{2}. The results may be better explained in the framework of self-modulation doping, similar to that in semiconductor heterostructures, and form a basis for developing any microscopic theories for cuprate superconductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...