Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 25(11): 12415-12420, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786597

RESUMEN

We demonstrated Graded Cavity Resonator Integrated Grating Filters (G-CRIGFs) that are narrowband spectral reflectors, spectrally tunable over more than 40 nm around 850 nm using a spatial gradient. A simple analytical model is introduced and validated experimentally to determine spectral performance of G-CRIGFs from the spectral properties of a standard Cavity Resonator Integrated Grating Filter (CRIGF).

2.
Nanotechnology ; 26(42): 425302, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26422697

RESUMEN

Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

3.
Opt Express ; 20(20): 22922-33, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23037442

RESUMEN

Near infra-red (NIR) self-guided photo-polymerization is investigated in the context of micro-optics photo-fabrication on VCSELs (Vertical-Cavity Surface Emitting Lasers). We present the optimized process we have developed to allow for a collective fabrication on III-V devices wafers under real-time optical monitoring. The influence of photo-chemical parameters on final micro-elements dimensions is studied for two types of single mode 760 nm VCSELs. The difference of the resulting tip shape between the two lasers is due to the strong differences of their emissions, as they are nicely reproduced by the computed near-field profiles. The tip shapes are also compared to those produced by the light emitted by an optical fiber and differences with VCSEL tips are discussed. Also the VCSEL characteristics with fabricated tips are discussed and found in good agreement with optical modeling.


Asunto(s)
Láseres de Semiconductores , Impresión Molecular/métodos , Polímeros/química , Polímeros/efectos de la radiación , Rayos Infrarrojos , Refractometría , Propiedades de Superficie
4.
Opt Express ; 15(11): 6900-7, 2007 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19547004

RESUMEN

We present a quantitative study on the fabrication of microlenses using a low-cost polymer dispending technique. Our method is based on the use of a silicon micro-cantilever robotized spotter system. We first give a detailed description of the technique. In a second part, the fabricated microlenses are fully characterized by means of SEM (Scanning Electron Microscope), AFM (Atomic Force Microscopy) non contact optical profilometry and Mach-Zehnder interferometry. Diameters in the range [25-130mum] are obtained with an average surface roughness of 2.02nm. Curvature radii, focal lengths as well as aberrations are also measured for the first time: the fabricated microlenses present focal lengths in the range [55-181mum] and exhibit high optical quality only limited by diffraction behaviour with RMS aberration lower than lambda/14.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA