Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Comput Biol ; 20(2): e1011919, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422168

RESUMEN

Improvements in the diagnosis and treatment of cancer have revealed long-term side effects of chemotherapeutics, particularly cardiotoxicity. Here, we present paired transcriptomics and metabolomics data characterizing in vitro cardiotoxicity to three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. Standard gene enrichment and metabolomics approaches identify some commonly affected pathways and metabolites but are not able to readily identify metabolic adaptations in response to cardiotoxicity. The paired data was integrated with a genome-scale metabolic network reconstruction of the heart to identify shifted metabolic functions, unique metabolic reactions, and changes in flux in metabolic reactions in response to these compounds. Using this approach, we confirm previously seen changes in the p53 pathway by doxorubicin and RNA synthesis by 5-fluorouracil, we find evidence for an increase in phospholipid metabolism in response to acetaminophen, and we see a shift in central carbon metabolism suggesting an increase in metabolic demand after treatment with doxorubicin and 5-fluorouracil.


Asunto(s)
Acetaminofén , Cardiotoxicidad , Humanos , Cardiotoxicidad/metabolismo , Metabolómica , Doxorrubicina/farmacología , Perfilación de la Expresión Génica , Fluorouracilo/farmacología
2.
BMC Cancer ; 22(1): 587, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643464

RESUMEN

BACKGROUND: With the introduction of DNA-damaging therapies into standard of care cancer treatment, there is a growing need for predictive diagnostics assessing homologous recombination deficiency (HRD) status across tumor types. Following the strong clinical evidence for the utility of DNA-sequencing-based HRD testing in ovarian cancer, and growing evidence in breast cancer, we present analytical validation of the Tempus HRD-DNA test. We further developed, validated, and explored the Tempus HRD-RNA model, which uses gene expression data from 16,750 RNA-seq samples to predict HRD status from formalin-fixed paraffin-embedded tumor samples across numerous cancer types. METHODS: Genomic and transcriptomic profiling was performed using next-generation sequencing from Tempus xT, Tempus xO, Tempus xE, Tempus RS, and Tempus RS.v2 assays on 48,843 samples. Samples were labeled based on their BRCA1, BRCA2 and selected Homologous Recombination Repair pathway gene (CDK12, PALB2, RAD51B, RAD51C, RAD51D) mutational status to train and validate HRD-DNA, a genome-wide loss-of-heterozygosity biomarker, and HRD-RNA, a logistic regression model trained on gene expression. RESULTS: In a sample of 2058 breast and 1216 ovarian tumors, BRCA status was predicted by HRD-DNA with F1-scores of 0.98 and 0.96, respectively. Across an independent set of 1363 samples across solid tumor types, the HRD-RNA model was predictive of BRCA status in prostate, pancreatic, and non-small cell lung cancer, with F1-scores of 0.88, 0.69, and 0.62, respectively. CONCLUSIONS: We predict HRD-positive patients across many cancer types and believe both HRD models may generalize to other mechanisms of HRD outside of BRCA loss. HRD-RNA complements DNA-based HRD detection methods, especially for indications with low prevalence of BRCA alterations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Ováricas , Femenino , Genómica , Recombinación Homóloga/genética , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN , Transcriptoma
3.
Int J Toxicol ; 40(5): 413-426, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514887

RESUMEN

Metabolomics is unique among omics technologies in being applicable to metabolism and toxicity studies broadly across organisms (e.g., humans, other mammals, model organisms, and even bacteria) and across biological materials (e.g., blood, urine, saliva, biopsy, and stool), including cultured cells and subcellular fractions. Metabolomics can be used to characterize biologic response patterns in humans as well as to support mechanistic studies in model systems and ex vivo studies. A broad range of resources are available, including publicly accessible data repositories (e.g., Metabolomics Workbench), tools for biostatistics and bioinformatics (e.g., MetaboAnalyst), metabolite identification (e.g., Metlin), and pathway analysis (e.g., Kyoto Encyclopedia of Genes and Genomes). Thus, metabolomics is more than a promise of the future; metabolomics is already available as a translational approach to facilitate precision medicine. This ACT Symposium review will contain an introduction to metabolomics in toxicity studies followed by sections on translational metabolic networks, translational metabolite biomarkers of acetaminophen-induced acute liver injury, translational framework using high-resolution metabolomics for integrated pharmacokinetics and pharmacodynamics, and precision medicine applications: extracting actionable targets from untargeted metabolomics data following one year in space.


Asunto(s)
Metabolómica , Medicina de Precisión , Acetaminofén/toxicidad , Animales , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacología , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos
4.
Cell Rep ; 34(10): 108836, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691118

RESUMEN

In diseased states, the heart can shift to use different carbon substrates, measured through changes in uptake of metabolites by imaging methods or blood metabolomics. However, it is not known whether these measured changes are a result of transcriptional changes or external factors. Here, we explore transcriptional changes in late-stage heart failure using publicly available data integrated with a model of heart metabolism. First, we present a heart-specific genome-scale metabolic network reconstruction (GENRE), iCardio. Next, we demonstrate the utility of iCardio in interpreting heart failure gene expression data by identifying tasks inferred from differential expression (TIDEs), which represent metabolic functions associated with changes in gene expression. We identify decreased gene expression for nitric oxide (NO) and N-acetylneuraminic acid (Neu5Ac) synthesis as common metabolic markers of heart failure. The methods presented here for constructing a tissue-specific model and identifying TIDEs can be extended to multiple tissues and diseases of interest.


Asunto(s)
Insuficiencia Cardíaca/genética , Redes y Vías Metabólicas/genética , Modelos Biológicos , Miocardio/metabolismo , Bases de Datos de Proteínas , Insuficiencia Cardíaca/patología , Humanos , Metabolómica/métodos , Ácido N-Acetilneuramínico/metabolismo , Óxido Nítrico/metabolismo , Índice de Severidad de la Enfermedad
5.
Toxicol Appl Pharmacol ; 412: 115390, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33387578

RESUMEN

The kidneys are metabolically active organs with importance in several physiological tasks such as the secretion of soluble wastes into the urine and synthesizing glucose and oxidizing fatty acids for energy in fasting (non-fed) conditions. Once damaged, the metabolic capability of the kidneys becomes altered. Here, we define metabolic tasks in a computational modeling framework to capture kidney function in an update to the iRno network reconstruction of rat metabolism using literature-based evidence. To demonstrate the utility of iRno for predicting kidney function, we exposed primary rat renal proximal tubule epithelial cells to four compounds with varying levels of nephrotoxicity (acetaminophen, gentamicin, 2,3,7,8-tetrachlorodibenzodioxin, and trichloroethylene) for six and twenty-four hours, and collected transcriptomics and metabolomics data to measure the metabolic effects of compound exposure. For the transcriptomics data, we observed changes in fatty acid metabolism and amino acid metabolism, as well as changes in existing markers of kidney function such as Clu (clusterin). The iRno metabolic network reconstruction was used to predict alterations in these same pathways after integrating transcriptomics data and was able to distinguish between select compound-specific effects on the proximal tubule epithelial cells. Genome-scale metabolic network reconstructions with coupled omics data can be used to predict changes in metabolism as a step towards identifying novel metabolic biomarkers of kidney function and dysfunction.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Túbulos Renales Proximales/efectos de los fármacos , Metaboloma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Acetaminofén/toxicidad , Animales , Células Cultivadas , Bases de Datos Genéticas , Metabolismo Energético/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Gentamicinas/toxicidad , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Metaboloma/genética , Metabolómica , Dibenzodioxinas Policloradas/toxicidad , Ratas Sprague-Dawley , Tricloroetileno/toxicidad
6.
PLoS Comput Biol ; 16(4): e1007099, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32298268

RESUMEN

The metabolic responses of bacteria to dynamic extracellular conditions drives not only the behavior of single species, but also entire communities of microbes. Over the last decade, genome-scale metabolic network reconstructions have assisted in our appreciation of important metabolic determinants of bacterial physiology. These network models have been a powerful force in understanding the metabolic capacity that species may utilize in order to succeed in an environment. Increasingly, an understanding of context-specific metabolism is critical for elucidating metabolic drivers of larger phenotypes and disease. However, previous approaches to use network models in concert with omics data to better characterize experimental systems have met challenges due to assumptions necessary by the various integration platforms or due to large input data requirements. With these challenges in mind, we developed RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution) which uses both transcriptomic abundances and parsimony of overall flux to identify the most cost-effective usage of metabolism that also best reflects the cell's investments into transcription. Additionally, in biological samples where it is difficult to quantify specific growth conditions, it becomes critical to develop methods that require lower amounts of user intervention in order to generate accurate metabolic predictions. Utilizing a metabolic network reconstruction for the model organism Escherichia coli str. K-12 substr. MG1655 (iJO1366), we found that RIPTiDe correctly identifies context-specific metabolic pathway activity without supervision or knowledge of specific media conditions. We also assessed the application of RIPTiDe to in vivo metatranscriptomic data where E. coli was present at high abundances, and found that our approach also effectively predicts metabolic behaviors of host-associated bacteria. In the setting of human health, understanding metabolic changes within bacteria in environments where growth substrate availability is difficult to quantify can have large downstream impacts on our ability to elucidate molecular drivers of disease-associated dysbiosis across the microbiota. Our results indicate that RIPTiDe may have potential to provide understanding of context-specific metabolism of bacteria within complex communities.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Transcriptoma , Algoritmos , Animales , Ciego/microbiología , Biología Computacional , Simulación por Computador , Disbiosis , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Genoma Bacteriano , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos
7.
Methods Mol Biol ; 2088: 315-330, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893380

RESUMEN

The drug development pipeline has stalled because of the difficulty in identifying new drug targets while minimizing off-target effects. Computational methods, such as the use of metabolic network reconstructions, may provide a cost-effective platform to test new hypotheses for drug targets and prevent off-target effects. Here, we summarize available methods to identify drug targets and off-target effects using either reaction-centric, gene-centric, or metabolite-centric approaches with genome-scale metabolic network reconstructions.


Asunto(s)
Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/fisiología , Preparaciones Farmacéuticas/administración & dosificación , Biología Computacional/métodos , Sistemas de Liberación de Medicamentos/métodos , Genoma/fisiología , Humanos
8.
Toxicol Sci ; 172(2): 279-291, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501904

RESUMEN

Context-specific GEnome-scale metabolic Network REconstructions (GENREs) provide a means to understand cellular metabolism at a deeper level of physiological detail. Here, we use transcriptomics data from chemically-exposed rat hepatocytes to constrain a GENRE of rat hepatocyte metabolism and predict biomarkers of liver toxicity using the Transcriptionally Inferred Metabolic Biomarker Response algorithm. We profiled alterations in cellular hepatocyte metabolism following in vitro exposure to four toxicants (acetaminophen, carbon tetrachloride, 2,3,7,8-tetrachlorodibenzodioxin, and trichloroethylene) for six hour. TIMBR predictions were compared with paired fresh and spent media metabolomics data from the same exposure conditions. Agreement between computational model predictions and experimental data led to the identification of specific metabolites and thus metabolic pathways associated with toxicant exposure. Here, we identified changes in the TCA metabolites citrate and alpha-ketoglutarate along with changes in carbohydrate metabolism and interruptions in ATP production and the TCA Cycle. Where predictions and experimental data disagreed, we identified testable hypotheses to reconcile differences between the model predictions and experimental data. The presented pipeline for using paired transcriptomics and metabolomics data provides a framework for interrogating multiple omics datasets to generate mechanistic insight of metabolic changes associated with toxicological responses.


Asunto(s)
Activación Metabólica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Acetaminofén/toxicidad , Activación Metabólica/genética , Animales , Biomarcadores/metabolismo , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Biología Computacional , Perfilación de la Expresión Génica , Masculino , Redes y Vías Metabólicas/genética , Metabolómica , Dibenzodioxinas Policloradas/toxicidad , Cultivo Primario de Células , Ratas Sprague-Dawley , Tricloroetileno/toxicidad
9.
Comput Biol Med ; 105: 64-71, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30584952

RESUMEN

GEnome-scale Network REconstructions (GENREs) mathematically describe metabolic reactions of an organism or a specific cell type. GENREs can be used with a number of constraint-based reconstruction and analysis (COBRA) methods to make computational predictions on how a system changes in different environments. We created a simplified GENRE (referred to as iSIM) that captures central energy metabolism with nine metabolic reactions to illustrate the use of and promote the understanding of GENREs and constraint-based methods. We demonstrate the simulation of single and double gene deletions, flux variability analysis (FVA), and test a number of metabolic tasks with the GENRE. Code to perform these analyses is provided in Python, R, and MATLAB. Finally, with iSIM as a guide, we demonstrate how inaccuracies in GENREs can limit their use in the interrogation of energy metabolism.


Asunto(s)
Análisis de Flujos Metabólicos , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Animales , Humanos
10.
Nat Commun ; 8: 14250, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28176778

RESUMEN

The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications.


Asunto(s)
Biología Computacional/métodos , Redes y Vías Metabólicas/genética , Modelos Biológicos , Especificidad de la Especie , Toxicogenética/métodos , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Metabolómica/métodos , Ratas
11.
J Lab Autom ; 20(1): 51-5, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25366331

RESUMEN

We present a miniaturized plate reader for measuring optical density in 96-well plates. Our standalone reader fits in most incubators, environmental chambers, or biological containment suites, allowing users to leverage their existing laboratory infrastructure. The device contains no moving parts, allowing an entire 96-well plate to be read several times per second. We demonstrate how the fast sampling rate allows our reader to detect small changes in optical density, even when the device is placed in a shaking incubator. A wireless communication module allows remote monitoring of multiple devices in real time. These features allow easy assembly of multiple readers to create a scalable, accurate solution for high-throughput phenotypic screening.


Asunto(s)
Técnicas Citológicas/instrumentación , Técnicas Citológicas/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrofotometría/instrumentación , Espectrofotometría/métodos , Automatización de Laboratorios/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...