Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Front Bioinform ; 4: 1280971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812660

RESUMEN

Radiation exposure poses a significant threat to human health. Emerging research indicates that even low-dose radiation once believed to be safe, may have harmful effects. This perception has spurred a growing interest in investigating the potential risks associated with low-dose radiation exposure across various scenarios. To comprehensively explore the health consequences of low-dose radiation, our study employs a robust statistical framework that examines whether specific groups of genes, belonging to known pathways, exhibit coordinated expression patterns that align with the radiation levels. Notably, our findings reveal the existence of intricate yet consistent signatures that reflect the molecular response to radiation exposure, distinguishing between low-dose and high-dose radiation. Moreover, we leverage a pathway-constrained variational autoencoder to capture the nonlinear interactions within gene expression data. By comparing these two analytical approaches, our study aims to gain valuable insights into the impact of low-dose radiation on gene expression patterns, identify pathways that are differentially affected, and harness the potential of machine learning to uncover hidden activity within biological networks. This comparative analysis contributes to a deeper understanding of the molecular consequences of low-dose radiation exposure.

2.
Patterns (N Y) ; 4(11): 100863, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38035192

RESUMEN

Significant acceleration of the future discovery of novel functional materials requires a fundamental shift from the current materials discovery practice, which is heavily dependent on trial-and-error campaigns and high-throughput screening, to one that builds on knowledge-driven advanced informatics techniques enabled by the latest advances in signal processing and machine learning. In this review, we discuss the major research issues that need to be addressed to expedite this transformation along with the salient challenges involved. We especially focus on Bayesian signal processing and machine learning schemes that are uncertainty aware and physics informed for knowledge-driven learning, robust optimization, and efficient objective-driven experimental design.

3.
Patterns (N Y) ; 4(11): 100875, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38035191

RESUMEN

The need for efficient computational screening of molecular candidates that possess desired properties frequently arises in various scientific and engineering problems, including drug discovery and materials design. However, the enormous search space containing the candidates and the substantial computational cost of high-fidelity property prediction models make screening practically challenging. In this work, we propose a general framework for constructing and optimizing a high-throughput virtual screening (HTVS) pipeline that consists of multi-fidelity models. The central idea is to optimally allocate the computational resources to models with varying costs and accuracy to optimize the return on computational investment. Based on both simulated and real-world data, we demonstrate that the proposed optimal HTVS framework can significantly accelerate virtual screening without any degradation in terms of accuracy. Furthermore, it enables an adaptive operational strategy for HTVS, where one can trade accuracy for efficiency.

4.
J Comput Biol ; 30(7): 751-765, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36961389

RESUMEN

TRIMER, Transcription Regulation Integrated with MEtabolic Regulation, is a genome-scale modeling pipeline targeting at metabolic engineering applications. Using TRIMER, regulated metabolic reactions can be effectively predicted by integrative modeling of metabolic reactions with a transcription factor-gene regulatory network (TRN), which is modeled through a Bayesian network (BN). In this article, we focus on sensitivity analysis of metabolic flux prediction for uncertainty quantification of BN structures for TRN modeling in TRIMER. We propose a computational strategy to construct the uncertainty class of TRN models based on the inferred regulatory order uncertainty given transcriptomic expression data. With that, we analyze the prediction sensitivity of the TRIMER pipeline for the metabolite yields of interest. The obtained sensitivity analyses can guide optimal experimental design (OED) to help acquire new data that can enhance TRN modeling and achieve specific metabolic engineering objectives, including metabolite yield alterations. We have performed small- and large-scale simulated experiments, demonstrating the effectiveness of our developed sensitivity analysis strategy for BN structure learning to quantify the edge importance in terms of metabolic flux prediction uncertainty reduction and its potential to effectively guide OED.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Teorema de Bayes , Redes y Vías Metabólicas/genética , Redes Reguladoras de Genes , Análisis de Flujos Metabólicos
5.
iScience ; 25(9): 104951, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36093045

RESUMEN

We developed a computational approach to find the best intervention to achieve transcription factor (TF) mediated transdifferentiation. We construct probabilistic Boolean networks (PBNs) from single-cell RNA sequencing data of two different cell states to model hematopoietic transcription factors cross-talk. This was achieved by a "sampled network" approach, which enabled us to construct large networks. The interventions to induce transdifferentiation consisted of permanently activating or deactivating each of the TFs and determining the probability mass transfer of steady-state probabilities from the departure to the destination cell type or state. Our findings support the common assumption that TFs that are differentially expressed between the two cell types are the best intervention points to achieve transdifferentiation. TFs whose interventions are found to transdifferentiate progenitor B cells into monocytes include EBF1 down-regulation, CEBPB up-regulation, TCF3 down-regulation, and STAT3 up-regulation.

6.
Patterns (N Y) ; 3(3): 100428, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35510184

RESUMEN

Classification has been a major task for building intelligent systems because it enables decision-making under uncertainty. Classifier design aims at building models from training data for representing feature-label distributions-either explicitly or implicitly. In many scientific or clinical settings, training data are typically limited, which impedes the design and evaluation of accurate classifiers. Atlhough transfer learning can improve the learning in target domains by incorporating data from relevant source domains, it has received little attention for performance assessment, notably in error estimation. Here, we investigate knowledge transferability in the context of classification error estimation within a Bayesian paradigm. We introduce a class of Bayesian minimum mean-square error estimators for optimal Bayesian transfer learning, which enables rigorous evaluation of classification error under uncertainty in small-sample settings. Using Monte Carlo importance sampling, we illustrate the outstanding performance of the proposed estimator for a broad family of classifiers that span diverse learning capabilities.

7.
Data Brief ; 42: 108113, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434232

RESUMEN

Transfer learning (TL) techniques can enable effective learning in data scarce domains by allowing one to re-purpose data or scientific knowledge available in relevant source domains for predictive tasks in a target domain of interest. In this Data in Brief article, we present a synthetic dataset for binary classification in the context of Bayesian transfer learning, which can be used for the design and evaluation of TL-based classifiers. For this purpose, we consider numerous combinations of classification settings, based on which we simulate a diverse set of feature-label distributions with varying learning complexity. For each set of model parameters, we provide a pair of target and source datasets that have been jointly sampled from the underlying feature-label distributions in the target and source domains, respectively. For both target and source domains, the data in a given class and domain are normally distributed, where the distributions across domains are related to each other through a joint prior. To ensure the consistency of the classification complexity across the provided datasets, we have controlled the Bayes error such that it is maintained within a range of predefined values that mimic realistic classification scenarios across different relatedness levels. The provided datasets may serve as useful resources for designing and benchmarking transfer learning schemes for binary classification as well as the estimation of classification error.

8.
STAR Protoc ; 3(1): 101184, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243375

RESUMEN

This protocol explains the pipeline for condition-dependent metabolite yield prediction using Transcription Regulation Integrated with MEtabolic Regulation (TRIMER). TRIMER targets metabolic engineering applications via a hybrid model integrating transcription factor (TF)-gene regulatory network (TRN) with a Bayesian network (BN) inferred from transcriptomic expression data to effectively regulate metabolic reactions. For E. coli and yeast, TRIMER achieves reliable knockout phenotype and flux predictions from the deletion of one or more TFs at the genome scale. For complete details on the use and execution of this protocol, please refer to Niu et al. (2021).


Asunto(s)
Escherichia coli , Redes Reguladoras de Genes , Teorema de Bayes , Escherichia coli/genética , Regulación de la Expresión Génica , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-32750876

RESUMEN

A key objective of studying biological systems is to design therapeutic intervention strategies for beneficially altering cell dynamics. Derivation of control policies is hindered by the high-dimensional state spaces associated with gene regulatory networks. Hence, it is critical to reduce the network complexity and the paper aims to address this issue by focusing on the distribution of the canalizing power (CP) of the genes in the model. Canalizing genes enforce broad corrective actions on cellular processes and play a crucial role in producing optimal reactions to external stimuli. Therefore, it is critical to reduce the network while preserving the canalizing power of genes. We reduce Boolean networks with perturbation by removing genes with the smallest canalizing power consecutively, and evaluate the stability of canalizing power. A systematic empirical study demonstrates that there are two classes of networks, reducible and irreducible with respect to the preservation of canalizing power of the genes. Based on these observations, we introduce the definition of reducible networks and proceed with the problem of selecting the relevant network features that allow for discriminating networks from the two different classes. We demonstrate the efficacy of the selected features on synthetic and real gene regulatory networks.


Asunto(s)
Redes Reguladoras de Genes , Modelos Genéticos , Redes Reguladoras de Genes/genética
10.
iScience ; 24(11): 103218, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34761179

RESUMEN

There has been extensive research in predictive modeling of genome-scale metabolic reaction networks. Living systems involve complex stochastic processes arising from interactions among different biomolecules. For more accurate and robust prediction of target metabolic behavior under different conditions, not only metabolic reactions but also the genetic regulatory relationships involving transcription factors (TFs) affecting these metabolic reactions should be modeled. We have developed a modeling and simulation pipeline enabling the analysis of Transcription Regulation Integrated with Metabolic Regulation: TRIMER. TRIMER utilizes a Bayesian network (BN) inferred from transcriptomes to model the transcription factor regulatory network. TRIMER then infers the probabilities of the gene states relevant to the metabolism of interest, and predicts the metabolic fluxes and their changes that result from the deletion of one or more transcription factors at the genome scale. We demonstrate TRIMER's applicability to both simulated and experimental data and provide performance comparison with other existing approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA