Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 96, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609407

RESUMEN

Gated entry of lipophilic ligands into the enclosed hydrophobic pocket in stand-alone Sec14 domain proteins often links lipid metabolism to membrane trafficking. Similar domains occur in multidomain mammalian proteins that activate small GTPases and regulate actin dynamics. The neuronal RhoGEF Kalirin, a central regulator of cytoskeletal dynamics, contains a Sec14 domain (KalbSec14) followed by multiple spectrin-like repeats and catalytic domains. Previous studies demonstrated that Kalirin lacking its Sec14 domain fails to maintain cell morphology or dendritic spine length, yet whether and how KalbSec14 interacts with lipids remain unknown. Here, we report the structural and biochemical characterization of KalbSec14. KalbSec14 adopts a closed conformation, sealing off the canonical ligand entry site, and instead employs a surface groove to bind a limited set of lysophospholipids. The low-affinity interactions of KalbSec14 with lysolipids are expected to serve as a general model for the regulation of Rho signaling by other Sec14-containing Rho activators.


Asunto(s)
Actinas , Citoesqueleto , Animales , Factores de Intercambio de Guanina Nucleótido Rho/genética , Lípidos , Mamíferos
2.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 1021-1031, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916226

RESUMEN

The application of sulfur single-wavelength anomalous dispersion (S-SAD) to determine the crystal structures of macromolecules can be challenging if the asymmetric unit is large, the crystals are small, the size of the anomalously scattering sulfur structure is large and the resolution at which the anomalous signals can be accurately measured is modest. Here, as a study of such a case, approaches to the SAD phasing of orthorhombic Ric-8A crystals are described. The structure of Ric-8A was published with only a brief description of the phasing process [Zeng et al. (2019), Structure, 27, 1137-1141]. Here, alternative approaches to determining the 40-atom sulfur substructure of the 103 kDa Ric-8A dimer that composes the asymmetric unit are explored. At the data-collection wavelength of 1.77 Šmeasured at the Frontier micro-focusing Macromolecular Crystallography (FMX) beamline at National Synchrotron Light Source II, the sulfur anomalous signal strength, |Δano|/σΔano (d''/sig), approaches 1.4 at 3.4 Šresolution. The highly redundant, 11 000 000-reflection data set measured from 18 crystals was segmented into isomorphous clusters using BLEND in the CCP4 program suite. Data sets within clusters or sets of clusters were scaled and merged using AIMLESS from CCP4 or, alternatively, the phenix.scale_and_merge tool from the Phenix suite. The latter proved to be the more effective in extracting anomalous signals. The HySS tool in Phenix, SHELXC/D and PRASA as implemented in the CRANK2 program suite were each employed to determine the sulfur substructure. All of these approaches were effective, although HySS, as a component of the phenix.autosol tool, required data from all crystals to find the positions of the sulfur atoms. Critical contributors in this case study to successful phase determination by SAD included (i) the high-flux FMX beamline, featuring helical-mode data collection and a helium-filled beam path, (ii) as recognized by many authors, a very highly redundant, multiple-crystal data set and (iii) the inclusion within that data set of data from crystals that were scanned over large ω ranges, yielding highly isomorphous and highly redundant intensity measurements.


Asunto(s)
Azufre , Sincrotrones , Cristalografía por Rayos X , Conformación Proteica , Azufre/química
3.
Nat Commun ; 13(1): 255, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017498

RESUMEN

Rieske oxygenases exploit the reactivity of iron to perform chemically challenging C-H bond functionalization reactions. Thus far, only a handful of Rieske oxygenases have been structurally characterized and remarkably little information exists regarding how these enzymes use a common architecture and set of metallocenters to facilitate a diverse range of reactions. Herein, we detail how two Rieske oxygenases SxtT and GxtA use different protein regions to influence the site-selectivity of their catalyzed monohydroxylation reactions. We present high resolution crystal structures of SxtT and GxtA with the native ß-saxitoxinol and saxitoxin substrates bound in addition to a Xenon-pressurized structure of GxtA that reveals the location of a substrate access tunnel to the active site. Ultimately, this structural information allowed for the identification of six residues distributed between three regions of SxtT that together control the selectivity of the C-H hydroxylation event. Substitution of these residues produces a SxtT variant that is fully adapted to exhibit the non-native site-selectivity and substrate scope of GxtA. Importantly, we also found that these selectivity regions are conserved in other structurally characterized Rieske oxygenases, providing a framework for predictively repurposing and manipulating Rieske oxygenases as biocatalysts.


Asunto(s)
Hierro/química , Hierro/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxilación , Modelos Moleculares , Oxigenasas/genética , Especificidad por Sustrato , Transactivadores/genética , Transactivadores/metabolismo
4.
Nat Commun ; 11(1): 1077, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103024

RESUMEN

Ric-8A is a cytosolic Guanine Nucleotide exchange Factor (GEF) that activates heterotrimeric G protein alpha subunits (Gα) and serves as an essential Gα chaperone. Mechanisms by which Ric-8A catalyzes these activities, which are stimulated by Casein Kinase II phosphorylation, are unknown. We report the structure of the nanobody-stabilized complex of nucleotide-free Gα bound to phosphorylated Ric-8A at near atomic resolution by cryo-electron microscopy and X-ray crystallography. The mechanism of Ric-8A GEF activity differs considerably from that employed by G protein-coupled receptors at the plasma membrane. Ric-8A engages a specific conformation of Gα at multiple interfaces to form a complex that is stabilized by phosphorylation within a Ric-8A segment that connects two Gα binding sites. The C-terminus of Gα is ejected from its beta sheet core, thereby dismantling the GDP binding site. Ric-8A binds to the exposed Gα beta sheet and switch II to stabilize the nucleotide-free state of Gα.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , División Celular Asimétrica/fisiología , Sitios de Unión/fisiología , Camélidos del Nuevo Mundo , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Desarrollo Embrionario/fisiología , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/ultraestructura , Fosforilación , Unión Proteica/fisiología , Conformación Proteica
5.
Nat Commun ; 11(1): 16, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911602

RESUMEN

NAD+ synthetase is an essential enzyme of de novo and recycling pathways of NAD+ biosynthesis in Mycobacterium tuberculosis but not in humans. This bifunctional enzyme couples the NAD+ synthetase and glutaminase activities through an ammonia tunnel but free ammonia is also a substrate. Here we show that the Homo sapiens NAD+ synthetase (hsNadE) lacks substrate specificity for glutamine over ammonia and displays a modest activation of the glutaminase domain compared to tbNadE. We report the crystal structures of hsNadE and NAD+ synthetase from M. tuberculosis (tbNadE) with synthetase intermediate analogues. Based on the observed exclusive arrangements of the domains and of the intra- or inter-subunit tunnels we propose a model for the inter-domain communication mechanism for the regulation of glutamine-dependent activity and NH3 transport. The structural and mechanistic comparison herein reported between hsNadE and tbNadE provides also a starting point for future efforts in the development of anti-TB drugs.


Asunto(s)
Amida Sintasas/metabolismo , Amoníaco/metabolismo , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Mycobacterium tuberculosis/enzimología , Amida Sintasas/química , Amida Sintasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/química , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Dominio Catalítico , Glutaminasa/química , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/metabolismo , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , NAD/metabolismo , Especificidad por Sustrato
6.
Structure ; 27(7): 1137-1147.e5, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31155309

RESUMEN

Ric-8A is a 530-amino acid cytoplasmic molecular chaperone and guanine nucleotide exchange factor (GEF) for i, q, and 12/13 classes of heterortrimeric G protein alpha subunits (Gα). We report the 2.2-Å crystal structure of the Ric-8A Gα-binding domain with GEF activity, residues 1-452, and is phosphorylated at Ser435 and Thr440. Residues 1-429 adopt a superhelical fold comprised of Armadillo (ARM) and HEAT repeats, and the C terminus is disordered. One of the phosphorylated residues potentially binds to a basic cluster in an ARM motif. Amino acid sequence conservation and published hydrogen-deuterium exchange data indicate repeats 3 through 6 to be a putative Gα-binding surface. Normal mode modeling of small-angle X-ray scattering data indicates that phosphorylation induces relative rotation between repeats 1-4, 5-6, and 7-9. 2D 1H-15N-TROSY spectra of [2H,15N]-labeled Gαi1 in the presence of R452 reveals chemical shift perturbations of the C terminus and Gαi1 residues involved in nucleotide binding.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Factores de Intercambio de Guanina Nucleótido/química , Proteínas Nucleares/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
J Mol Biol ; 429(7): 1009-1029, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28238763

RESUMEN

Holliday junction (HJ) is a hallmark intermediate in DNA recombination and must be processed by dissolution (for double HJ) or resolution to ensure genome stability. Although HJ resolvases have been identified in all domains of life, there is a long-standing effort to search in prokaryotes and eukarya for proteins promoting HJ migration. Here, we report the structural and functional characterization of a novel ATPase, Sulfolobus islandicusPilT N-terminal-domain-containing ATPase (SisPINA), encoded by the gene adjacent to the resolvase Hjc coding gene. PINA is conserved in archaea and vital for S. islandicus viability. Purified SisPINA forms hexameric rings in the crystalline state and in solution, similar to the HJ migration helicase RuvB in Gram-negative bacteria. Structural analysis suggests that ATP binding and hydrolysis cause conformational changes in SisPINA to drive branch migration. Further studies reveal that SisPINA interacts with SisHjc and coordinates HJ migration and cleavage.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , ADN/metabolismo , Resolvasas de Unión Holliday/metabolismo , Sulfolobus/enzimología , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfato/metabolismo , Supervivencia Celular , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Sulfolobus/fisiología
8.
Nature ; 484(7393): 265-9, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22419154

RESUMEN

Derivatives of vitamin B(12) are used in methyl group transfer in biological processes as diverse as methionine synthesis in humans and CO(2) fixation in acetogenic bacteria. This seemingly straightforward reaction requires large, multimodular enzyme complexes that adopt multiple conformations to alternately activate, protect and perform catalysis on the reactive B(12) cofactor. Crystal structures determined thus far have provided structural information for only fragments of these complexes, inspiring speculation about the overall protein assembly and conformational movements inherent to activity. Here we present X-ray crystal structures of a complete 220 kDa complex that contains all enzymes responsible for B(12)-dependent methyl transfer, namely the corrinoid iron-sulphur protein and its methyltransferase from the model acetogen Moorella thermoacetica. These structures provide the first three-dimensional depiction of all protein modules required for the activation, protection and catalytic steps of B(12)-dependent methyl transfer. In addition, the structures capture B(12) at multiple locations between its 'resting' and catalytic positions, allowing visualization of the dramatic protein rearrangements that enable methyl transfer and identification of the trajectory for B(12) movement within the large enzyme scaffold. The structures are also presented alongside in crystallo spectroscopic data, which confirm enzymatic activity within crystals and demonstrate the largest known conformational movements of proteins in a crystalline state. Taken together, this work provides a model for the molecular juggling that accompanies turnover and helps explain why such an elaborate protein framework is required for such a simple, yet biologically essential reaction.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Moorella/enzimología , Vitamina B 12/metabolismo , Sitios de Unión , Biocatálisis , Corrinoides/metabolismo , Cristalografía por Rayos X , Ácido Fólico/metabolismo , Metilación , Modelos Biológicos , Modelos Moleculares , Moorella/química , Multimerización de Proteína , Estructura Terciaria de Proteína
9.
Biochem J ; 443(2): 417-26, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22280445

RESUMEN

Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,ß-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.


Asunto(s)
Amoníaco/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Mycobacterium tuberculosis/enzimología , Sitios de Unión , Biocatálisis , Glutamato-Amoníaco Ligasa/química , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Cinética , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
10.
J Mol Biol ; 401(4): 590-604, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20600116

RESUMEN

Campylobacter jejuni, a major cause of acute bacterial diarrhea in humans, expresses numerous proteins to import diverse forms of essential iron. The expression of p19 and an adjacent iron transporter homologue (ftr1) is strongly induced upon iron limitation, suggesting a function in iron acquisition. Here, we show that the loss of P19 alone is detrimental to growth on iron-restricted media. Furthermore, metal binding analysis demonstrates that recombinant P19 has distinct copper and iron binding sites. Crystal structures of P19 have been solved to 1.41 A resolution, revealing an immunoglobulin-like fold. A P19 homodimer in which both monomers contribute ligands to two equivalent copper sites located adjacent to methionine-rich patches is observed. Copper coordination occurs via three histidine residues (His42, His95, and His132) and Met88. A solvent channel lined with conserved acidic residues leads to the copper site. Soaking crystals with a solution of manganese as iron analog reveals a second metal binding site in this solvent channel (metal-metal distance, 7.7 A). Glu44 lies between the metal sites and displays multiple conformations in the crystal structures, suggesting a role in regulating metal-metal interaction. Dimerization is shown to be metal dependent in vitro and is detected in vivo by cross-linking.


Asunto(s)
Proteínas Bacterianas/química , Campylobacter jejuni/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Campylobacter jejuni/patogenicidad , Cobre/química , Cobre/metabolismo , Cristalografía por Rayos X , Humanos , Ligandos , Manganeso/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Relación Estructura-Actividad
11.
Biochemistry ; 49(29): 6206-18, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20557110

RESUMEN

Heme-derived linear tetrapyrroles (phytobilins) in phycobiliproteins and phytochromes perform critical light-harvesting and light-sensing roles in oxygenic photosynthetic organisms. A key enzyme in their biogenesis, phycocyanobilin:ferredoxin oxidoreductase (PcyA), catalyzes the overall four-electron reduction of biliverdin IXalpha to phycocyanobilin--the common chromophore precursor for both classes of biliproteins. This interconversion occurs via semireduced bilin radical intermediates that are profoundly stabilized by selected mutations of two critical catalytic residues, Asp105 and His88. To understand the structural basis for this stabilization and to gain insight into the overall catalytic mechanism, we report the high-resolution crystal structures of substrate-loaded Asp105Asn and His88Gln mutants of Synechocystis sp. PCC 6803 PcyA in the initial oxidized and one-electron reduced radical states. Unlike wild-type PcyA, both mutants possess a bilin-interacting axial water molecule that is ejected from the active site upon formation of the enzyme-bound neutral radical complex. Structural studies of both mutants also show that the side chain of Glu76 is unfavorably located for D-ring vinyl reduction. On the basis of these structures and companion (15)N-(1)H long-range HMQC NMR analyses to assess the protonation state of histidine residues, we propose a new mechanistic scheme for PcyA-mediated reduction of both vinyl groups of biliverdin wherein an axial water molecule, which prematurely binds and ejects from both mutants upon one electron reduction, is required for catalytic turnover of the semireduced state.


Asunto(s)
Proteínas Bacterianas/química , Pigmentos Biliares/química , Oxidorreductasas/química , Ficobilinas/química , Ficocianina/química , Agua/química , Asparagina/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Histidina/genética , Mutación , Oxidorreductasas/genética , Conformación Proteica
12.
J Appl Crystallogr ; 43(Pt 5): 1261-1270, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22184477

RESUMEN

For the past five years, the Structural Molecular Biology group at the Stanford Synchrotron Radiation Lightsource (SSRL) has provided general users of the facility with fully remote access to the macromolecular crystallography beamlines. This was made possible by implementing fully automated beamlines with a flexible control system and an intuitive user interface, and by the development of the robust and efficient Stanford automated mounting robotic sample-changing system. The ability to control a synchrotron beamline remotely from the comfort of the home laboratory has set a new paradigm for the collection of high-quality X-ray diffraction data and has fostered new collaborative research, whereby a number of remote users from different institutions can be connected at the same time to the SSRL beamlines. The use of remote access has revolutionized the way in which scientists interact with synchrotron beamlines and collect diffraction data, and has also triggered a shift in the way crystallography students are introduced to synchrotron data collection and trained in the best methods for collecting high-quality data. SSRL provides expert crystallographic and engineering staff, state-of-the-art crystallography beamlines, and a number of accessible tools to facilitate data collection and in-house remote training, and encourages the use of these facilities for education, training, outreach and collaborative research.

13.
Biochemistry ; 48(31): 7432-40, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19583207

RESUMEN

Nickel-containing carbon monoxide dehydrogenases (CODHs) reversibly catalyze the oxidation of carbon monoxide to carbon dioxide and are of vital importance in the global carbon cycle. The unusual catalytic CODH C-cluster has been crystallographically characterized as either a NiFe(4)S(4) or a NiFe(4)S(5) metal center, the latter containing a fifth, additional sulfide that bridges Ni and a unique Fe site. To determine whether this bridging sulfide is catalytically relevant and to further explore the mechanism of the C-cluster, we obtained crystal structures of the 310 kDa bifunctional CODH/acetyl-CoA synthase complex from Moorella thermoacetica bound both with a substrate H(2)O/OH(-) molecule and with a cyanide inhibitor. X-ray diffraction data were collected from native crystals and from identical crystals soaked in a solution containing potassium cyanide. In both structures, the substrate H(2)O/OH(-) molecule exhibits binding to the unique Fe site of the C-cluster. We also observe cyanide binding in a bent conformation to Ni of the C-cluster, adjacent the substrate H(2)O/OH(-) molecule. Importantly, the bridging sulfide is not present in either structure. As these forms of the C-cluster represent the coordination environment immediately before the reaction takes place, our findings do not support a fifth, bridging sulfide playing a catalytic role in the enzyme mechanism. The crystal structures presented here, along with recent structures of CODHs from other organisms, have led us toward a unified mechanism for CO oxidation by the C-cluster, the catalytic center of an environmentally important enzyme.


Asunto(s)
Acetato CoA Ligasa/química , Aldehído Oxidorreductasas/química , Dominio Catalítico , Cianuros/química , Complejos Multienzimáticos/química , Agua/química , Acetato CoA Ligasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Methanosarcina barkeri , Complejos Multienzimáticos/metabolismo
14.
Biochemistry ; 47(11): 3474-83, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18293927

RESUMEN

A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.


Asunto(s)
Acetato CoA Ligasa/química , Aldehído Oxidorreductasas/química , Complejos Multienzimáticos/química , Xenón/química , Acetato CoA Ligasa/aislamiento & purificación , Aldehído Oxidorreductasas/aislamiento & purificación , Cristalización , Cristalografía por Rayos X , Bacilos Grampositivos Asporogénicos Irregulares , Modelos Químicos , Modelos Moleculares , Complejos Multienzimáticos/aislamiento & purificación , Valor Predictivo de las Pruebas , Unión Proteica
15.
J Biol Chem ; 282(9): 6609-6618, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17172470

RESUMEN

The methyltetrahydrofolate (CH(3)-H(4)folate) corrinoid-iron-sulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH(3)-H(4)folate to cob(I)amide. This key step in anaerobic CO and CO(2) fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH(3)-H(4)folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH(3)-H(4)folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH(3)-H(4)folate binding. An N199A variant exhibits only approximately 20-fold weakened affinity for CH(3)-H(4)folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.


Asunto(s)
Asparagina , Enlace de Hidrógeno , Metiltransferasas/metabolismo , Sitios de Unión , Catálisis , Activación Enzimática , Ácido Fólico/metabolismo , Cinética , Metiltransferasas/química , Protones , Agua
16.
J Biol Chem ; 281(38): 28318-25, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16803881

RESUMEN

Halorespiration is a bacterial respiratory process in which haloorganic compounds act as terminal electron acceptors. This process is controlled at transcriptional level by CprK, a member of the ubiquitous CRP-FNR family. Here we present the crystal structures of oxidized CprK in presence of the ligand ortho-chlorophenolacetic acid and of reduced CprK in absence of this ligand. These structures reveal that highly specific binding of chlorinated, rather than the corresponding non-chlorinated, phenolic compounds in the NH(2)-terminal beta-barrels causes reorientation of these domains with respect to the central alpha-helix at the dimer interface. Unexpectedly, the COOH-terminal DNA-binding domains dimerize in the non-DNA binding state. We postulate the ligand-induced conformational change allows formation of interdomain contacts that disrupt the DNA domain dimer interface and leads to repositioning of the helix-turn-helix motifs. These structures provide a structural framework for further studies on transcriptional control by CRP-FNR homologs in general and of halorespiration regulation by CprK in particular.


Asunto(s)
Proteínas Bacterianas/química , Desulfitobacterium/genética , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Cristalización , Desulfitobacterium/metabolismo , Dimerización , Fenilacetatos/metabolismo , Estructura Secundaria de Proteína
17.
J Biol Inorg Chem ; 9(5): 511-5, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15221484

RESUMEN

Eight Ni proteins are known and three of these, CO dehydrogenase (CODH), acetyl-CoA synthase (ACS), and hydrogenase, are Ni-Fe-S proteins. In the last three years, the long-awaited structures of CODH and ACS have been solved. The bioinorganic community was shocked, as the structures of the active sites of CODH and ACS, the C- and A-cluster, respectively, which each had been predicted to consist of a [Fe(4)S(4)] cluster bridged to a single Ni, revealed unexpected compositions and arrangements. Crystal structures of ACS revealed major differences in protein conformation and in A-cluster composition; for example, a [Fe(4)S(4)] cluster bridged to a binuclear center in which one of the metal binding sites was occupied by Ni, Cu, or Zn. Recent studies have revealed Ni-Ni to be the active state, unveiled the source of the heterogeneity that had plagued studies of CODH/ACS for decades, and produced a metal-replacement strategy to generate highly active and nearly homogeneous enzyme.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Metales/química , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Aldehído Oxidorreductasas/química , Catálisis , Cobre/química , Cobre/metabolismo , Cristalografía por Rayos X , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Metales/metabolismo , Níquel/química , Níquel/metabolismo , Conformación Proteica , Zinc/química , Zinc/metabolismo
18.
Science ; 298(5593): 567-72, 2002 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-12386327

RESUMEN

A metallocofactor containing iron, sulfur, copper, and nickel has been discovered in the enzyme carbon monoxide dehydrogenase/acetyl-CoA (coenzyme A) synthase from Moorella thermoacetica (f. Clostridium thermoaceticum). Our structure at 2.2 angstrom resolution reveals that the cofactor responsible for the assembly of acetyl-CoA contains a [Fe4S4] cubane bridged to a copper-nickel binuclear site. The presence of these three metals together in one cluster was unanticipated and suggests a newly discovered role for copper in biology. The different active sites of this bifunctional enzyme complex are connected via a channel, 138 angstroms long, that provides a conduit for carbon monoxide generated at the C-cluster on one subunit to be incorporated into acetyl-CoA at the A-cluster on the other subunit.


Asunto(s)
Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Clostridium/enzimología , Cobre/química , Hierro/química , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Níquel/química , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Anaerobiosis , Sitios de Unión , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Catálisis , Cristalografía por Rayos X , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...