Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 29(4): 2121-2130, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531245

RESUMEN

The carob tree (Ceratonia siliqua L.) is an important component in semi-arid Mediterranean ecosystems, particularly in Morocco where it plays a considerable socio-economic role. This species is widely used in the reforestation programmes and in the rehabilitation of degraded soils serving both environmental and socio-economic objectives. In spite of these assets, this species is suffering the particular climatic conditions, rare and irregular rains, long hot and dry summers, generally, leading to desertification processes. To withstand these contrasting conditions, selected arbuscular mycorrhizal fungi (AMF) were tested for their contribution to the growth, nutrient uptake and photosynthesis improvement of the carob tree C. siliqua under nursery conditions. The objective of this study was, to evaluate the effects of some arbuscular mycorrhizal fungi complexes isolated in different Mediterranean ecosystems compared to single-species isolates selected using morphological tools on the growth, mineral nutrition, and chlorophyll content of C. siliqua seedlings. The results indicate that all the used AMF inocula stimulated significantly the height of C. siliqua seedlings after eight months under nursery conditions. An increase in plant height between 33% and 70% compared to a control without inoculation was recorded. Similarly, the aerial dry weight recorded an increase of 62% to 124% comparing inoculated and non-inoculated seedlings. The root dry weight has shown an increase rate of 24% to 86% compared to the control. The analysis of mineral contents in plant tissues, showed a highly significant increase in P. N. K. Ca and Mg levels of the aerial parts compared to the control. A significant increase in chlorophyll contents was noticed when inoculated seedlings were compared to non-inoculated ones. This study had confirmed the importance of AMF improving the growth of C. siliqua seedlings; the AMF complexes remain to have the important growth and mineral nutrition responses. However some single- species have shown similar magnitude to the complexes for all analysed parameters. A large biofertilizer potential of the single-species isolates in the inoculation of C. siliqua is demonstrated for the first time.

2.
Plants (Basel) ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834866

RESUMEN

The date, the palm tree (Phoenix dactylifera L.) is an important component of arid and semi-arid Mediterranean ecosystems, particularly in Morocco where it plays a considerable socio-economic and ecological role. This species is largely affected by desertification, global warming, and anthropic pressure. Salinity is a very worrying problem that negatively affects the growth and the physiological and biochemical activities of the date palm. In these arid zones, the main challenge is to develop new environmentally friendly technologies that improve crop tolerance to abiotic restraints including salinity. In this sense, Arbuscular mycorrhizal fungi (AMF) have received much attention due to their capability in promoting plant growth and tolerance to abiotic and biotic stresses. It is thus fitting that the current research work was undertaken to evaluate and compare the effects of native AMF on the development of the growth and tolerance of date palm to salt stress along with testing their role as biofertilizers. To achieve this goal, two complexes and two monospecific isolates of native and non-native AMF were used to inoculate date palm seedlings under saline stress (0 g·L-1 Na Cl, 10 g·L-1, and 20 g·L-1 Na Cl). The obtained results showed that salinity drastically affected the physiological parameters and growth of date palm seedlings, whilst the application of selected AMF significantly improved growth parameters and promoted the activities of antioxidant enzymes as a protective strategy. Inoculation with non-native AMF complex and monospecific isolates showed higher responses for all analyzed parameters when compared with the native complex and isolate. It therefore becomes necessary to glamorize the fungal communities associated with date palm for their use in the inoculation of Phoenix dactylifera L. seedlings.

3.
Saudi J Biol Sci ; 28(1): 825-832, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424372

RESUMEN

In the current study, we investigated the impact of inoculation with a selected indigenous arbuscular mycorrhizal fungi (AMF) complex on the growth and physiology of carob plants at increasing levels of watering (25, 50, 75 and 100% field capacity). The following growth and stress parameters were monitored in carob seedlings after 6 months of growth and 2 months of applied drought stress: fresh and dry weight, root and shoot lengths, leaf surface area, relative water content, stomatal conductance and membrane stability. Chlorophyll a and b, total soluble sugars, proline and protein contents were also determined along with the activities of stress enzymes: Catalase, Peroxidase and Superoxide dismutase. The obtained results indicate that inoculation with the indigenous AMF complex has a positive impact on the plant's growth as all the assessed parameters were significantly improved in the mycorrhizal plants. Additionally, our results show that mycorrhization contributes to the minimization of the impact of drought stress on the carob plants and allows a better adaptation to dry conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...