Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Vaccine ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705804

RESUMEN

BACKGROUND: A single dose of Ad26.COV2.S is well-tolerated and effective in preventing moderate-to-severe disease outcomes due to COVID-19. We evaluated the impact of dose level, number of doses, and dose interval on immunogenicity, reactogenicity, and safety of Ad26.COV2.S in adults. Anamnestic responses were also explored. METHODS: This randomised, double-blind, placebo-controlled, Phase 2a study was conducted in adults aged 18-55 years and ≥ 65 years (NCT04535453). Four dose levels (1.25 × 1010, 2.5 × 1010, 5 × 1010, and 1 × 1011 viral particles [vp], single and 2-dose schedules, and dose intervals of 56 and 84 days, were assessed. Four or 6 months post-primary vaccination, Ad26.COV2.S 1.25 × 1010 vp was given to evaluate anamnestic responses. Humoral and cell-mediated immune responses were measured. Reactogenicity and safety were assessed in all participants. RESULTS: All Ad26.COV2.S schedules induced humoral responses with evidence of a dose response relationship. A single dose of Ad26.COV2.S (5 × 1010 vp) induced antibody and cellular immune responses that persisted for up to at least 6 months. In the 2-dose regimens, antibody responses were higher than 1-dose regimens at comparable dose levels, and the magnitude of the immune response increased when the interval between doses was increased (84 days vs 56 days). Rapid, marked immune responses were observed in all groups after vaccine antigen exposure indicating immune memory. Durable immune responses were observed in all groups for up to at least 6 months post-antigen exposure. Strong and consistent correlations between neutralising and binding antibodies were observed CD4 + and CD8 + T cell responses were similar after all regimens. Reactogenicity within 7 days post-vaccination tended to be dose-related. CONCLUSION: The study supports the primary, single dose schedule with Ad26.COV2.S at 5 × 1010 vp and homologous booster vaccination after a 6 month interval. Rapid and marked responses to vaccine antigen exposure indicate induction of immune memory by 1- and 2-dose primary vaccination.

2.
Clin Infect Dis ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657084

RESUMEN

BACKGROUND: Shorter prophylactic vaccine schedules may offer more rapid protection against Ebola in resource-limited settings. METHODS: This randomized, observer-blind, placebo-controlled, phase 2 trial conducted in five sub-Saharan African countries included people without HIV (PWOH, n = 249) and people living with HIV (PLWH, n = 250). Adult participants received one of two accelerated Ebola vaccine regimens (MVA-BN-Filo, Ad26.ZEBOV administered 14 days apart [n = 79] or Ad26.ZEBOV, MVA-BN-Filo administered 28 days apart [n = 322]) or saline/placebo (n = 98). The primary endpoints were safety (adverse events [AEs]) and immunogenicity (Ebola virus [EBOV] glycoprotein-specific binding antibody responses). Binding antibody responders were defined as participants with a > 2.5-fold increase from baseline or the lower limit of quantification if negative at baseline. RESULTS: The mean age was 33.4 years, 52% of participants were female, and among PLWH, the median (interquartile range) CD4+ cell count was 560.0 (418.0-752.0) cells/µL. AEs were generally mild/moderate with no vaccine-related serious AEs or remarkable safety profile differences by HIV status. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody response rates in vaccine recipients were 99% for the 14-day regimen (geometric mean concentrations [GMCs]: 5168 enzyme-linked immunosorbent assay units (EU)/mL in PWOH; 2509 EU/mL in PLWH), and 98% for the 28-day regimen (GMCs: 6037 EU/mL in PWOH; 2939 EU/mL in PLWH). At 12 months post-dose 2, GMCs in PWOH and PLWH were 635 and 514 EU/mL, respectively, for the 14-day regimen and 331 and 360 EU/mL, respectively, for the 28-day regimen. CONCLUSIONS: Accelerated 14- and 28-day Ebola vaccine regimens were safe and immunogenic in PWOH and PLWH in Africa. TRIAL REGISTRATION: NCT02598388.

3.
Hum Vaccin Immunother ; 20(1): 2327747, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38523332

RESUMEN

This phase-3, double-blind, placebo-controlled study (NCT04228783) evaluated lot-to-lot consistency of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. Participants were randomized (6:6:6:1) to receive the two-dose regimen from three consecutively manufactured lots of Ad26.ZEBOV on Day 1 paired with three consecutively manufactured lots of MVA-BN-Filo on Day 57 (Groups 1-3) or two doses of placebo (Group 4). An additional cohort also received an Ad26.ZEBOV booster or placebo 4 months post-dose 2. Equivalence of the immunogenicity at 21 days post-dose 2 between any two groups was demonstrated if the 95% confidence interval (CI) of the Ebola virus glycoprotein (EBOV GP)-binding antibody geometric mean concentration (GMC) ratio was entirely within the prespecified margin of 0.5-2.0. Lot-to-lot consistency (i.e., consecutive lots can be consistently manufactured) was accomplished if equivalence was shown for all three pairwise comparisons. Results showed that the primary objective in the per-protocol immunogenicity subset (n = 549) was established for each pairwise comparison (Group 1 vs 2: GMC ratio = 0.9 [95% CI: 0.8, 1.1], Group 1 vs 3: 0.9 [0.8, 1.1], Group 2 vs 3: 1.0 [0.9, 1.2]). Equivalence of the three groups for the Ad26.ZEBOV component only was also demonstrated at 56 days post-dose 1. EBOV GP-binding antibody responses (post-vaccination concentrations >2.5-fold from baseline) were observed in 419/421 (99.5%) vaccine recipients at 21 days post-dose 2 and 445/460 (96.7%) at 56 days post-dose 1. In the booster cohort (n = 39), GMCs increased 9.0- and 11.8-fold at 7 and 21 days post-booster, respectively, versus pre-booster. Ad26.ZEBOV, MVA-BN-Filo was well tolerated, and no safety issues were identified.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacuna contra Viruela , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Vacunación/métodos , Anticuerpos Antivirales , Método Doble Ciego , Inmunogenicidad Vacunal , Vacunas Atenuadas
4.
Vaccines (Basel) ; 12(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400193

RESUMEN

In this prospective, observational study (ClinicalTrials.gov Identifier: NCT02661464), long-term safety information was collected from participants previously exposed to the Ebola vaccines Ad26.ZEBOV and/or MVA-BN-Filo while enrolled in phase 1, 2, or 3 clinical studies. The study was conducted at 15 sites in seven countries (Burkina Faso, France, Kenya, Tanzania, Uganda, the United Kingdom, and the United States). Adult participants and offspring from vaccinated female participants who became pregnant (estimated conception ≤28 days after vaccination with MVA-BN-Filo or ≤3 months after vaccination with Ad26.ZEBOV) were enrolled. Adults were followed for 60 months after their first vaccination, and children born to female participants were followed for 60 months after birth. In the full analysis set (n = 614 adults; median age [range]: 32.0 [18-65] years), 49 (8.0%) had ≥1 serious adverse event (SAE); the incidence rate of any SAE was 27.4 per 1000 person-years (95% confidence interval: 21.0, 35.2). The unrelated SAEs of malaria were reported in the two infants in the full analysis set, aged 11 and 18 months; both episodes were resolved. No deaths or life-threatening SAEs occurred during the study. Overall, no major safety issues were identified; one related SAE was reported. These findings support the long-term clinical safety of the Ad26.ZEBOV and MVA-BN-Filo vaccines.

5.
NPJ Vaccines ; 8(1): 174, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940656

RESUMEN

The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV, MVA-BN-Filo two-dose vaccination regimen against Ebola has been investigated in several clinical trials. Longitudinal data on IgG-binding antibody concentrations were analyzed from 487 participants enrolled in six Phase I and Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2 consortia. A model based on ordinary differential equations describing the dynamics of antibodies and short- and long-lived antibody-secreting cells (ASCs) was used to model the humoral response from 7 days after the second vaccination to a follow-up period of 2 years. Using a population-based approach, we first assessed the robustness of the model, which was originally estimated based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified factors that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and found an influence of geographic region, sex, and age on the humoral response dynamics, with longer antibody persistence in Europeans and women and higher production of antibodies in younger participants.

6.
Lancet Glob Health ; 11(11): e1743-e1752, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37858585

RESUMEN

BACKGROUND: This study assessed the safety and immunogenicity of the Ad26.ZEBOV and MVA-BN-Filo Ebola virus (EBOV) vaccine regimen in infants aged 4-11 months in Guinea and Sierra Leone. METHODS: In this phase 2, randomised, double-blind, active-controlled trial, we randomly assigned healthy infants (1:1 in a sentinel cohort, 5:2 for the remaining infants via an interactive web response system) to receive Ad26.ZEBOV followed by MVA-BN-Filo (Ebola vaccine group) or two doses of meningococcal quadrivalent conjugate vaccine (control group) administered 56 days apart. Infants were recruited at two sites in west Africa: Conakry, Guinea, and Kambia, Sierra Leone. All infants received the meningococcal vaccine 8 months after being randomly assigned. The primary objective was safety. The secondary objective was immunogenicity, measured as EBOV glycoprotein-binding antibody concentration 21 days post-dose 2, using the Filovirus Animal Non-Clinical Group ELISA. This study is registered with ClinicalTrials.gov (NCT03929757) and the Pan African Clinical Trials Registry (PACTR201905827924069). FINDINGS: From Aug 20 to Nov 29, 2019, 142 infants were screened and 108 were randomly assigned (Ebola vaccine n=75; control n=33). The most common solicited local adverse event was injection-site pain (Ebola vaccine 15 [20%] of 75; control four [12%] of 33). The most common solicited systemic adverse events with the Ebola vaccine were irritability (26 [35%] of 75), decreased appetite (18 [24%] of 75), pyrexia (16 [21%] of 75), and decreased activity (15 [20%] of 75). In the control group, ten (30%) of 33 had irritability, seven (21%) of 33 had decreased appetite, three (9%) of 33 had pyrexia, and five (15%) of 33 had decreased activity. The frequency of unsolicited adverse events was 83% (62 of 75 infants) in the Ebola vaccine group and 85% (28 of 33 infants) in the control group. No serious adverse events were vaccine-related. In the Ebola vaccine group, EBOV glycoprotein-binding antibody geometric mean concentrations (GMCs) at 21 days post-dose 2 were 27 700 ELISA units (EU)/mL (95% CI 20 477-37 470) in infants aged 4-8 months and 20 481 EU/mL (15 325-27 372) in infants aged 9-11 months. The responder rate was 100% (74 of 74 responded). In the control group, GMCs for both age groups were less than the lower limit of quantification and the responder rate was 3% (one of 33 responded). INTERPRETATION: Ad26.ZEBOV and MVA-BN-Filo was well tolerated and induced strong humoral responses in infants younger than 1 year. There were no safety concerns related to vaccination. FUNDING: Janssen Vaccines & Prevention and Innovative Medicines Initiative 2 Joint Undertaking. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Lactante , Vacunas contra el Virus del Ébola/efectos adversos , Fiebre Hemorrágica Ebola/prevención & control , Sierra Leona , Guinea , Anticuerpos Antivirales , Método Doble Ciego , Glicoproteínas , Fiebre
7.
Front Immunol ; 14: 1215302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727795

RESUMEN

Introduction: In the absence of clinical efficacy data, vaccine protective effect can be extrapolated from animals to humans, using an immunological biomarker in humans that correlates with protection in animals, in a statistical approach called immunobridging. Such an immunobridging approach was previously used to infer the likely protective effect of the heterologous two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. However, this immunobridging model does not provide information on how the persistence of the vaccine-induced immune response relates to durability of protection in humans. Methods and results: In both humans and non-human primates, vaccine-induced circulating antibody levels appear to be very stable after an initial phase of contraction and are maintained for at least 3.8 years in humans (and at least 1.3 years in non-human primates). Immunological memory was also maintained over this period, as shown by the kinetics and magnitude of the anamnestic response following re-exposure to the Ebola virus glycoprotein antigen via booster vaccination with Ad26.ZEBOV in humans. In non-human primates, immunological memory was also formed as shown by an anamnestic response after high-dose, intramuscular injection with Ebola virus, but was not sufficient for protection against Ebola virus disease at later timepoints due to a decline in circulating antibodies and the fast kinetics of disease in the non-human primates model. Booster vaccination within three days of subsequent Ebola virus challenge in non-human primates resulted in protection from Ebola virus disease, i.e. before the anamnestic response was fully developed. Discussion: Humans infected with Ebola virus may benefit from the anamnestic response to prevent disease progression, as the incubation time is longer and progression of Ebola virus disease is slower as compared to non-human primates. Therefore, the persistence of vaccine-induced immune memory could be considered as a potential correlate of long-term protection against Ebola virus disease in humans, without the need for a booster.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Memoria Inmunológica , Anticuerpos , Antígenos Virales
8.
Vaccine ; 41(37): 5351-5359, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37517912

RESUMEN

BACKGROUND: Thrombosis with thrombocytopenia syndrome (TTS) is a very rare disorder described after vaccination with adenoviral vector-based COVID-19 vaccines. Co-occurring thrombosis with thrombocytopenia reported after vaccination can be a proxy for identification of TTS. METHODS: Descriptive database review of all cases of co-occurring (within 42 days) thrombosis with thrombocytopenia in participants in Ad26.COV2.S clinical trials or recipients of Ad26.COV2.S in real-world clinical practice. Cases were retrieved from Janssens' clinical trial and Global Medical Safety databases. RESULTS: There were 34 cases of co-occurring thrombosis with thrombocytopenia in Ad26.COV2.S recipients (46 per 100,000 person-years) and 15 after placebo (75 per 100,000 person-years) in clinical trials. Among Ad26.COV2.S recipients, mean age at the time of the event was 63 years (range 25-85), 82 % were male, mean time-to-onset 112 days (range 8-339) post-last Ad26.COV2.S dose, 26 events occurred post-dose-1, and 7 within a 28-day risk window post-vaccination. Diagnostic certainty was evaluated using Brighton Collaboration, US Centers for Disease Control and Prevention, and European Medicines Agency Pharmacovigilance Risk Assessment Committee case definitions. One case met the highest level of diagnostic certainty for all 3 definitions. There were 355 spontaneous reports of co-occurring thrombosis with thrombocytopenia in the Global Medical Safety database, 47 % males, 85 % within 28-days after vaccination. Twenty-seven cases met the highest level of diagnostic certainty for all definitions, 21 female, 19 with cerebral venous sinus thrombosis, age-range 18-68 years. Time-to-onset was 7-14 days post-vaccination in 20 cases. There were 8 fatalities. CONCLUSION: TTS induced by Ad26.COV2.S is very rare. Most co-occurring thrombosis with thrombocytopenia does not constitute TTS.


Asunto(s)
COVID-19 , Trombocitopenia , Estados Unidos , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Adolescente , Adulto Joven , Ad26COVS1 , Vacunas contra la COVID-19/efectos adversos , COVID-19/complicaciones , Mercadotecnía , Trombocitopenia/epidemiología
9.
EBioMedicine ; 91: 104562, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37099841

RESUMEN

BACKGROUND: This analysis evaluated the immune response to the two-dose, heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccine regimen, administered 56-days apart, from multiple African sites based on results from one analytic laboratory. METHODS: Immunogenicity across three trials (EBL2002, EBL2004/PREVAC, EBL3001) conducted in East and West Africa is summarised. Vaccine-induced Ebola glycoprotein-binding antibody concentrations were analysed by Q2 Solutions laboratory at baseline, 21 days (EBL2002 and EBL3001) or 28 days (EBL2004) post-dose 2 (regimen completion), and 12 months post-dose 1 using the validated Filovirus Animal Nonclinical Group Ebola glycoprotein enzyme-linked immunosorbent assay (ELISA). Responders were defined as those with a >2.5-fold increase from baseline or the lower limit of quantification (LLOQ) if 

Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Glicoproteínas , Inmunidad Humoral
10.
N Engl J Med ; 388(7): 609-620, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36791161

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) can cause serious lower respiratory tract disease in older adults, but no licensed RSV vaccine currently exists. An adenovirus serotype 26 RSV vector encoding a prefusion F (preF) protein (Ad26.RSV.preF) in combination with RSV preF protein was previously shown to elicit humoral and cellular immunogenicity. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 2b, proof-of-concept trial to evaluate the efficacy, immunogenicity, and safety of an Ad26.RSV.preF-RSV preF protein vaccine. Adults who were 65 years of age or older were randomly assigned in a 1:1 ratio to receive vaccine or placebo. The primary end point was the first occurrence of RSV-mediated lower respiratory tract disease that met one of three case definitions: three or more symptoms of lower respiratory tract infection (definition 1), two or more symptoms of lower respiratory tract infection (definition 2), and either two or more symptoms of lower respiratory tract infection or one or more symptoms of lower respiratory tract infection plus at least one systemic symptom (definition 3). RESULTS: Overall, 5782 participants were enrolled and received an injection. RSV-mediated lower respiratory tract disease meeting case definitions 1, 2, and 3 occurred in 6, 10, and 13 vaccine recipients and in 30, 40, and 43 placebo recipients, respectively. Vaccine efficacy was 80.0% (94.2% confidence interval [CI], 52.2 to 92.9), 75.0% (94.2% CI, 50.1 to 88.5), and 69.8% (94.2% CI, 43.7 to 84.7) for case definitions 1, 2, and 3, respectively. After vaccination, RSV A2 neutralizing antibody titers increased by a factor of 12.1 from baseline to day 15, a finding consistent with other immunogenicity measures. Percentages of participants with solicited local and systemic adverse events were higher in the vaccine group than in the placebo group (local, 37.9% vs. 8.4%; systemic, 41.4% vs. 16.4%); most adverse events were mild to moderate in severity. The frequency of serious adverse events was similar in the vaccine group and the placebo group (4.6% and 4.7%, respectively). CONCLUSIONS: In adults 65 years of age or older, Ad26.RSV.preF-RSV preF protein vaccine was immunogenic and prevented RSV-mediated lower respiratory tract disease. (Funded by Janssen Vaccines and Prevention; CYPRESS ClinicalTrials.gov number, NCT03982199.).


Asunto(s)
Anticuerpos Neutralizantes , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Anciano , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Método Doble Ciego , Infecciones por Virus Sincitial Respiratorio/sangre , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/uso terapéutico , Virus Sincitial Respiratorio Humano/inmunología , Infecciones del Sistema Respiratorio/sangre , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Eficacia de las Vacunas , Inmunogenicidad Vacunal/inmunología , Resultado del Tratamiento
11.
NPJ Vaccines ; 7(1): 156, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450746

RESUMEN

Without clinical efficacy data, vaccine protective effect may be extrapolated from animals to humans using an immunologic marker that correlates with protection in animals. This immunobridging approach was used for the two-dose Ebola vaccine regimen Ad26.ZEBOV, MVA-BN-Filo. Ebola virus (EBOV) glycoprotein binding antibody data obtained from 764 vaccinated healthy adults in five clinical studies (NCT02416453, NCT02564523, NCT02509494, NCT02543567, NCT02543268) were used to calculate mean predicted survival probability (with preplanned 95% confidence interval [CI]). We used a logistic regression model based on EBOV glycoprotein binding antibody responses in vaccinated non-human primates (NHPs) and NHP survival after EBOV challenge. While the protective effect of the vaccine regimen in humans can be inferred in this fashion, the extrapolated survival probability cannot be directly translated into vaccine efficacy. The primary immunobridging analysis evaluated the lower limit of the CI against predefined success criterion of 20% and passed with mean predicted survival probability of 53.4% (95% CI: 36.7-67.4).

12.
Nat Microbiol ; 7(12): 1996-2010, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357712

RESUMEN

Measuring immune correlates of disease acquisition and protection in the context of a clinical trial is a prerequisite for improved vaccine design. We analysed binding and neutralizing antibody measurements 4 weeks post vaccination as correlates of risk of moderate to severe-critical COVID-19 through 83 d post vaccination in the phase 3, double-blind placebo-controlled phase of ENSEMBLE, an international randomized efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three antibody immune markers we measured, we found most support for 50% inhibitory dilution (ID50) neutralizing antibody titre as a correlate of risk and of protection. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) at non-quantifiable ID50 (<2.7 IU50 ml-1) and increased to 89% (78%, 96%) at ID50 = 96.3 IU50 ml-1. Comparison of the vaccine efficacy by ID50 titre curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a correlate of protection across trials and vaccine types.


Asunto(s)
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Vacuna nCoV-2019 mRNA-1273 , Eficacia de las Vacunas , Anticuerpos Neutralizantes
13.
PLoS One ; 17(10): e0274906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36197845

RESUMEN

BACKGROUND: Though clinically similar, Ebola virus disease and Marburg virus disease are caused by different viruses. Of the 30 documented outbreaks of these diseases in sub-Saharan Africa, eight were major outbreaks (≥200 cases; five caused by Zaire ebolavirus [EBOV], two by Sudan ebolavirus [SUDV], and one by Marburg virus [MARV]). Our purpose is to develop a multivalent vaccine regimen protecting against each of these filoviruses. This first-in-human study assessed the safety and immunogenicity of several multivalent two-dose vaccine regimens that contain Ad26.Filo and MVA-BN-Filo. METHODS: Ad26.Filo combines three vaccines encoding the glycoprotein (GP) of EBOV, SUDV, and MARV. MVA-BN-Filo is a multivalent vector encoding EBOV, SUDV, and MARV GPs, and Taï Forest nucleoprotein. This Phase 1, randomized, double-blind, placebo-controlled study enrolled healthy adults (18-50 years) into four groups, randomized 5:1 (active:placebo), to assess different Ad26.Filo and MVA-BN-Filo vaccine directionality and administration intervals. The primary endpoint was safety; immune responses against EBOV, SUDV, and MARV GPs were also assessed. RESULTS: Seventy-two participants were randomized, and 60 (83.3%) completed the study. All regimens were well tolerated with no deaths or vaccine-related serious adverse events (AEs). The most frequently reported solicited local AE was injection site pain/tenderness. Solicited systemic AEs most frequently reported were headache, fatigue, chills, and myalgia; most solicited AEs were Grade 1-2. Solicited/unsolicited AE profiles were similar between regimens. Twenty-one days post-dose 2, 100% of participants on active regimen responded to vaccination and exhibited binding antibodies against EBOV, SUDV, and MARV GPs; neutralizing antibody responses were robust against EBOV (85.7-100%), but lower against SUDV (35.7-100%) and MARV (0-57.1%) GPs. An Ad26.Filo booster induced a rapid further increase in humoral responses. CONCLUSION: This study demonstrates that heterologous two-dose vaccine regimens with Ad26.Filo and MVA-BN-Filo are well tolerated and immunogenic in healthy adults. CLINICALTRIALS.GOV: NCT02860650.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Marburgvirus , Adolescente , Adulto , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas , Humanos , Persona de Mediana Edad , Nucleoproteínas , Vacunas Combinadas , Virus Vaccinia , Adulto Joven
14.
Lancet Infect Dis ; 22(12): 1703-1715, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113538

RESUMEN

BACKGROUND: Despite the availability of effective vaccines against COVID-19, booster vaccinations are needed to maintain vaccine-induced protection against variant strains and breakthrough infections. This study aimed to investigate the efficacy, safety, and immunogenicity of the Ad26.COV2.S vaccine (Janssen) as primary vaccination plus a booster dose. METHODS: ENSEMBLE2 is a randomised, double-blind, placebo-controlled, phase 3 trial including crossover vaccination after emergency authorisation of COVID-19 vaccines. Adults aged at least 18 years without previous COVID-19 vaccination at public and private medical practices and hospitals in Belgium, Brazil, Colombia, France, Germany, the Philippines, South Africa, Spain, the UK, and the USA were randomly assigned 1:1 via a computer algorithm to receive intramuscularly administered Ad26.COV2.S as a primary dose plus a booster dose at 2 months or two placebo injections 2 months apart. The primary endpoint was vaccine efficacy against the first occurrence of molecularly confirmed moderate to severe-critical COVID-19 with onset at least 14 days after booster vaccination, which was assessed in participants who received two doses of vaccine or placebo, were negative for SARS-CoV-2 by PCR at baseline and on serology at baseline and day 71, had no major protocol deviations, and were at risk of COVID-19 (ie, had no PCR-positive result or discontinued the study before day 71). Safety was assessed in all participants; reactogenicity, in terms of solicited local and systemic adverse events, was assessed as a secondary endpoint in a safety subset (approximately 6000 randomly selected participants). The trial is registered with ClinicalTrials.gov, NCT04614948, and is ongoing. FINDINGS: Enrolment began on Nov 16, 2020, and the primary analysis data cutoff was June 25, 2021. From 34 571 participants screened, the double-blind phase enrolled 31 300 participants, 14 492 of whom received two doses (7484 in the Ad26.COV2.S group and 7008 in the placebo group) and 11 639 of whom were eligible for inclusion in the assessment of the primary endpoint (6024 in the Ad26.COV2.S group and 5615 in the placebo group). The median (IQR) follow-up post-booster vaccination was 36·0 (15·0-62·0) days. Vaccine efficacy was 75·2% (adjusted 95% CI 54·6-87·3) against moderate to severe-critical COVID-19 (14 cases in the Ad26.COV2.S group and 52 cases in the placebo group). Most cases were due to the variants alpha (B.1.1.7) and mu (B.1.621); endpoints for the primary analysis accrued from Nov 16, 2020, to June 25, 2021, before the global dominance of delta (B.1.617.2) or omicron (B.1.1.529). The booster vaccine exhibited an acceptable safety profile. The overall frequencies of solicited local and systemic adverse events (evaluated in the safety subset, n=6067) were higher among vaccine recipients than placebo recipients after the primary and booster doses. The frequency of solicited adverse events in the Ad26.COV2.S group were similar following the primary and booster vaccinations (local adverse events, 1676 [55·6%] of 3015 vs 896 [57·5%] of 1559, respectively; systemic adverse events, 1764 [58·5%] of 3015 vs 821 [52·7%] of 1559, respectively). Solicited adverse events were transient and mostly grade 1-2 in severity. INTERPRETATION: A homologous Ad26.COV2.S booster administered 2 months after primary single-dose vaccination in adults had an acceptable safety profile and was efficacious against moderate to severe-critical COVID-19. Studies assessing efficacy against newer variants and with longer follow-up are needed. FUNDING: Janssen Research & Development.


Asunto(s)
COVID-19 , Vacunas , Adulto , Humanos , Adolescente , SARS-CoV-2 , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Ad26COVS1 , Método Doble Ciego , Inmunogenicidad Vacunal , Anticuerpos Antivirales
15.
Vaccines (Basel) ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35746491

RESUMEN

Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies in European trial participants have demonstrated durable activation, proliferation and antibody-dependent NK cell activation after heterologous two-dose Ebola vaccination with adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo. Regional variation in immunity and environmental exposure to pathogens, in particular human cytomegalovirus, have profound impacts on NK cell functional capacity. We therefore assessed the NK cell phenotype and function in African trial participants with universal exposure to HCMV. We demonstrate a significant redistribution of NK cell subsets after vaccine dose two, involving the enrichment of less differentiated CD56dimCD57- and CD56dimFcεR1γ+ (canonical) cells and the increased proliferation of these subsets. Sera taken after vaccine dose two support robust antibody-dependent NK cell activation in a standard NK cell readout; these responses correlate strongly with the concentration of anti-Ebola glycoprotein specific antibodies. These sera also promote comparable IFN-γ production in autologous NK cells taken at baseline and post-vaccine dose two. However, degranulation responses of post-vaccination NK cells were reduced compared to baseline NK cells and these effects could not be directly attributed to alterations in NK cell phenotype after vaccination. These studies demonstrate consistent changes in NK cell phenotypic composition and robust antibody-dependent NK cell function and reveal novel characteristics of these responses after heterologous two dose Ebola vaccination in African individuals.

16.
Vaccine ; 40(32): 4403-4411, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35667914

RESUMEN

BACKGROUND: Ad26.COV2.S is a well-tolerated and effective vaccine against COVID-19. We evaluated durability of anti-SARS-CoV-2 antibodies elicited by single-dose Ad26.COV2.S and the impact of boosting. METHODS: In randomized, double-blind, placebo-controlled, phase 1/2a and phase 2 trials, participants received single-dose Ad26.COV2.S (5 × 1010 viral particles [vp]) followed by booster doses of 5 × 1010 vp or 1.25 × 1010 vp. Neutralizing antibody levels were determined by a virus neutralization assay (VNA) approximately 8-9 months after dose 1. Binding and neutralizing antibody levels were evaluated by an enzyme-linked immunosorbent assay and pseudotyped VNA 6 months after dose 1 and 7 and 28 days after boosting. RESULTS: Data were analyzed from phase 1/2a participants enrolled from 22 July-18 December 2020 (Cohort 1a, 18-55 years [y], N = 25; Cohort 2a, 18-55y, N = 17; Cohort 3, ≥65y, N = 22), and phase 2 participants from 14 to 22 September 2020 (18-55y and ≥ 65y, N = 73). Single-dose Ad26.COV2.S elicited stable neutralizing antibodies for at least 8-9 months and stable binding antibodies for at least 6 months, irrespective of age. A 5 × 1010 vp 2-month booster dose increased binding antibodies by 4.9- to 6.2-fold 14 days post-boost versus 28 days after initial immunization. A 6-month booster elicited a steep and robust 9-fold increase in binding antibody levels 7 days post-boost. A 5.0-fold increase in neutralizing antibodies was observed by 28 days post-boost for the Beta variant. A 1.25 × 1010 vp 6-month booster elicited a 3.6-fold increase in binding antibody levels at 7 days post-boost versus pre-boost, with a similar magnitude of post-boost responses in both age groups. CONCLUSIONS: Single-dose Ad26.COV2.S elicited durable antibody responses for at least 8 months and elicited immune memory. Booster-elicited binding and neutralizing antibody responses were rapid and robust, even with a quarter vaccine dose, and stronger with a longer interval since primary vaccination. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04436276, NCT04535453.


Asunto(s)
Ad26COVS1 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2
17.
Immunol Rev ; 310(1): 47-60, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689434

RESUMEN

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused substantial morbidity and mortality. Despite the availability of efficacious vaccines, new variants with reduced sensitivity to vaccine-induced protection are a troubling new reality. The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding a full-length, membrane-bound severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation. This review discusses the immunogenicity and efficacy of Ad26.COV2.S as a single-dose primary vaccination and as a homologous or heterologous booster vaccination. Ad26.COV2.S elicits broad humoral and cellular immune responses, which are associated with protective efficacy/effectiveness against SARS-CoV-2 infection, moderate to severe/critical COVID-19, and COVID-19-related hospitalization and death, including against emerging SARS-CoV-2 variants. The humoral immune responses elicited by Ad26.COV2.S vaccination are durable, continue to increase for at least 2-3 months postvaccination, and involve a range of functional antibodies. Ad26.COV2.S given as a heterologous booster to mRNA vaccine-primed individuals markedly increases humoral and cellular immune responses. The use of Ad26.COV2.S as primary vaccination and as part of booster regimens is supporting the ongoing efforts to control and mitigate the COVID-19 pandemic.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
18.
medRxiv ; 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35441174

RESUMEN

Anti-spike IgG binding antibody, anti-receptor binding domain IgG antibody, and pseudovirus neutralizing antibody measurements four weeks post-vaccination were assessed as correlates of risk of moderate to severe-critical COVID-19 outcomes through 83 days post-vaccination and as correlates of protection following a single dose of Ad26.COV2.S COVID-19 vaccine in the placebo-controlled phase of ENSEMBLE, an international, randomized efficacy trial. Each marker had evidence as a correlate of risk and of protection, with strongest evidence for 50% inhibitory dilution (ID50) neutralizing antibody titer. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; p=0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43, 72%) at nonquantifiable ID50 (< 2.7 IU50/ml) and rose to 89% (78, 96%) at ID50 = 96.3 IU50/ml. Comparison of the vaccine efficacy by ID50 titer curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine, and the COV002-UK trial of the AZD1222 vaccine supported consistency of the ID50 titer correlate of protection across trials and vaccine types.

19.
J Infect Dis ; 226(6): 979-982, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35429381

RESUMEN

This secondary analysis of the phase 3 ENSEMBLE trial (NCT04505722) assessed the impact of preexisting humoral immunity to adenovirus 26 (Ad26) on the immunogenicity of Ad26.COV2.S-elicited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody levels in 380 participants in Brazil, South Africa, and the United States. Among those vaccinated in Brazil and South Africa, 31% and 66%, respectively, had prevaccination serum-neutralizing activity against Ad26, with little preexisting immunity detected in the United States. Vaccine recipients in each country had similar postvaccination spike (S) protein-binding antibody levels, indicating that baseline immunity to Ad26 has no clear impact on vaccine-induced immune responses.


Asunto(s)
Infecciones por Adenoviridae , COVID-19 , Ad26COVS1 , Adenoviridae , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vectores Genéticos , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunogenicidad Vacunal , SARS-CoV-2
20.
Hum Vaccin Immunother ; 18(5): 2044255, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35344464

RESUMEN

An inactivated poliovirus vaccine candidate using Sabin strains (sIPV) grown on the PER.C6® cell line was assessed in infants after demonstrated immunogenicity and safety in adults. The study recruited 300 infants who were randomized (1:1:1:1) to receive one of 3 dose levels of sIPV or a conventional IPV based on Salk strains (cIPV). Poliovirus-neutralizing antibodies were measured before the first dose and 28 days after the third dose. Reactogenicity was assessed for 7 days and unsolicited adverse events (AEs) for 28 days after each vaccination. Serious AEs (SAEs) were recorded throughout the study. Solicited AEs were mostly mild to moderate. None of the SAEs reported in the study were judged vaccine related, including one fatal SAE due to aspiration of vomitus that occurred 26 days after the third dose of low-dose sIPV. After 3 sIPV vaccinations and across all dose levels, seroconversion (SC) rates were at least 92% against Sabin poliovirus types and at least 80% against Salk types, with a dose-response in neutralizing antibody geometric mean titers (GMTs) observed across the 3 sIPV groups. Compared to cIPV, the 3 sIPV groups displayed similar or higher SC rates and GMTs against the 3 Sabin types but showed a lower response against Salk types 1 and 2; this was most visible for Salk type 1. While the PER.C6® cell line-based sIPV showed an acceptable safety profile and immunogenicity in infants, lower seroprotection against type 1 warrants optimization of dose level and additional clinical evaluation.


Asunto(s)
Poliomielitis , Poliovirus , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Línea Celular , Humanos , Inmunogenicidad Vacunal , Lactante , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...