Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Biomedicines ; 12(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38672274

RESUMEN

Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy. We have developed STINGel, an extended-release formulation that prolongs the availability of STING agonists, which has demonstrated an enhanced anti-tumor effect in OSCC compared to STING agonist injection. This study investigates the impact of intra-tumoral STINGel on OSCC-induced pain using two separate OSCC models and nociceptive behavioral assays. Intra-tumoral STINGel significantly reduced mechanical allodynia in the orofacial cancer model and alleviated thermal and mechanical hyperalgesia in the hind paw model. To determine the cellular signaling cascade contributing to the antinociceptive effect, we performed an in-depth analysis of immune cell populations via single-cell RNA-seq. We demonstrated an increase in M1-like macrophages and N1-like neutrophils after STINGel treatment. The identified regulatory pathways controlled immune response activation, myeloid cell differentiation, and cytoplasmic translation. Functional pathway analysis demonstrated the suppression of translation at neuron synapses and the negative regulation of neuron projection development in M2-like macrophages after STINGel treatment. Importantly, STINGel treatment upregulated TGF-ß pathway signaling between various cell populations and peripheral nervous system (PNS) macrophages and enhanced TGF-ß signaling within the PNS itself. Overall, this study sheds light on the mechanisms underlying STINGel-mediated antinociception and anti-tumorigenic impact.

2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673926

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy that is characterized by an expansion of immature myeloid precursors. Despite therapeutic advances, the prognosis of AML patients remains poor and there is a need for the evaluation of promising therapeutic candidates to treat the disease. The objective of this study was to evaluate the efficacy of duocarmycin Stable A (DSA) in AML cells in vitro. We hypothesized that DSA would induce DNA damage in the form of DNA double-strand breaks (DSBs) and exert cytotoxic effects on AML cells within the picomolar range. Human AML cell lines Molm-14 and HL-60 were used to perform 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), DNA DSBs, cell cycle, 5-ethynyl-2-deoxyuridine (EdU), colony formation unit (CFU), Annexin V, RNA sequencing and other assays described in this study. Our results showed that DSA induced DNA DSBs, induced cell cycle arrest at the G2M phase, reduced proliferation and increased apoptosis in AML cells. Additionally, RNA sequencing results showed that DSA regulates genes that are associated with cellular processes such as DNA repair, G2M checkpoint and apoptosis. These results suggest that DSA is efficacious in AML cells and is therefore a promising potential therapeutic candidate that can be further evaluated for the treatment of AML.


Asunto(s)
Apoptosis , Proliferación Celular , Duocarmicinas , Leucemia Mieloide Aguda , Humanos , Apoptosis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Proliferación Celular/efectos de los fármacos , Duocarmicinas/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células HL-60 , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos
3.
J Pers Med ; 14(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38541033

RESUMEN

Structural variants drive tumorigenesis by disrupting normal gene function through insertions, inversions, translocations, and copy number changes, including deletions and duplications. Detecting structural variants is crucial for revealing their roles in tumor development, clinical outcomes, and personalized therapy. Presently, most studies rely on short-read data from next-generation sequencing that aligns back to a reference genome to determine if and, if so, where a structural variant occurs. However, structural variant discovery by short-read sequencing is challenging, primarily because of the difficulty in mapping regions of repetitive sequences. Optical genome mapping (OGM) is a recent technology used for imaging and assembling long DNA strands to detect structural variations. To capture the structural variant landscape more thoroughly in the human genome, we developed an integrated pipeline that combines Bionano OGM and Illumina whole-genome sequencing and applied it to samples from 29 pediatric B-ALL patients. The addition of OGM allowed us to identify 511 deletions, 506 insertions, 93 duplications/gains, and 145 translocations that were otherwise missed in the short-read data. Moreover, we identified several novel gene fusions, the expression of which was confirmed by RNA sequencing. Our results highlight the benefit of integrating OGM and short-read detection methods to obtain a comprehensive analysis of genetic variation that can aid in clinical diagnosis, provide new therapeutic targets, and improve personalized medicine in cancers driven by structural variation.

4.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37630974

RESUMEN

The Rho associated coiled-coil containing protein kinase (ROCK1 and ROCK2) and myotonic dystrophy-related Cdc-42 binding kinases (MRCKα and MRCKß) are critical regulators of cell proliferation and cell plasticity, a process intimately involved in cancer cell migration and invasion. Previously, we reported the discovery of a novel small molecule (DJ4) selective multi-kinase inhibitor of ROCK1/2 and MRCKα/ß. Herein, we further characterized the anti-proliferative and apoptotic effects of DJ4 in non-small cell lung cancer and triple-negative breast cancer cells. To further optimize the ROCK/MRCK inhibitory potency of DJ4, we generated a library of 27 analogs. Among the various structural modifications, we identified four additional active analogs with enhanced ROCK/MRCK inhibitory potency. The anti-proliferative and cell cycle inhibitory effects of the active analogs were examined in non-small cell lung cancer, breast cancer, and melanoma cell lines. The anti-proliferative effectiveness of DJ4 and the active analogs was further demonstrated against a wide array of cancer cell types using the NCI-60 human cancer cell line panel. Lastly, these new analogs were tested for anti-migratory effects in highly invasive MDA-MB-231 breast cancer cells. Together, our results demonstrate that selective inhibitors of ROCK1/2 (DJE4, DJ-Allyl) inhibited cell proliferation and induced cell cycle arrest at G2/M but were less effective in cell death induction compared with dual ROCK1/2 and MRCKα/ß (DJ4 and DJ110).

5.
Front Immunol ; 14: 1224516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37503349

RESUMEN

Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP1, IGF2BP2, and IGF2BP3) are a family of RNA-binding proteins that play an essential role in the development and disease by regulating mRNA stability and translation of critical regulators of cell division and metabolism. Genetic and chemical inhibition of these proteins slows down cancer cell proliferation, decreases invasiveness, and prolongs life span in a variety of animal models. The role of RNA-binding proteins in the induction of tissues' immunogenicity is increasingly recognized, but, the impact of the IGF2BPs family of proteins on the induction of innate and adaptive immune responses in cancer is not fully understood. Here we report that downregulation of IGF2BP1, 2, and 3 expression facilitates the expression of interferon beta-stimulated genes. IGF2BP1 has a greater effect on interferon beta and gamma signaling compared to IGF2BP2 and IGF2BP3 paralogs. We demonstrate that knockdown or knockout of IGF2BP1, 2, and 3 significantly potentiates inhibition of cell growth induced by IFNß and IFNγ. Mouse melanoma cells with Igf2bp knockouts demonstrate increased expression of MHC I (H-2) and induce intracellular Ifn-γ expression in syngeneic T-lymphocytes in vitro. Increased immunogenicity, associated with Igf2bp1 inhibition, "inflames" mouse melanoma tumors microenvironment in SM1/C57BL/6 and SW1/C3H mouse models measured by a two-fold increase of NK cells and tumor-associated myeloid cells. Finally, we demonstrate that the efficiency of anti-PD1 immunotherapy in the mouse melanoma model is significantly more efficient in tumors that lack Igf2bp1 expression. Our retrospective data analysis of immunotherapies in human melanoma patients indicates that high levels of IGF2BP1 and IGF2BP3 are associated with resistance to immunotherapies and poor prognosis. In summary, our study provides evidence of the role of IGF2BP proteins in regulating tumor immunogenicity and establishes those RBPs as immunotherapeutic targets in cancer.


Asunto(s)
Melanoma , Microambiente Tumoral , Animales , Ratones , Humanos , Estudios Retrospectivos , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/metabolismo , Inmunidad
6.
Oncogene ; 42(19): 1558-1571, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973517

RESUMEN

Neuroblastoma is a highly metastatic cancer, and thus is one of the leading causes of cancer-related mortalities in pediatric patients. More than 50% of NB cases exhibit 17q21-ter partial chromosomal gain, which is independently associated with poor survival, suggesting the clinical importance of genes at this locus in NB. IGF2BP1 is one such proto-oncogene located at 17q locus, and was found to be upregulated in patients with metastatic NBs. Here, utilizing multiple immunocompetent mouse models, along with our newly developed highly metastatic NB cell line, we demonstrate the role of IGF2BP1 in promoting NB metastasis. Importantly, we show the significance of small extracellular vesicles (EVs) in NB progression, and determine the pro-metastatic function of IGF2BP1 by regulating the NB-EV-protein cargo. Through unbiased proteomic analysis of EVs, we discovered two novel targets (SEMA3A and SHMT2) of IGF2BP1, and reveal the mechanism of IGF2BP1 in NB metastasis. We demonstrate that IGF2BP1 directly binds and governs the expression of SEMA3A/SHMT2 in NB cells, thereby modulating their protein levels in NB-EVs. IGF2BP1-affected levels of SEMA3A and SHMT2 in the EVs, regulate the formation of pro-metastatic microenvironment at potential metastatic organs. Finally, higher levels of SEMA3A/SHMT2 proteins in the EVs derived from NB-PDX models indicate the clinical significance of the two proteins and IGF2BP1-SEMA3A/SHMT2 axis in NB metastasis.


Asunto(s)
Vesículas Extracelulares , Neuroblastoma , Animales , Ratones , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Neuroblastoma/patología , Proteómica , Semaforina-3A/metabolismo , Microambiente Tumoral
7.
Exp Hematol Oncol ; 12(1): 23, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849955

RESUMEN

BACKGROUND: More effective targeted therapy and new combination regimens are needed for Acute myeloid leukemia (AML), owing to the unsatisfactory long-term prognosis of the disease. Here, we investigated the synergistic effect and the mechanism of a histone deacetylase inhibitor, Chidamide in combination with Cladribine, a purine nucleoside antimetabolite analog in the disease. METHODS: Cell counting kit-8 assays and Chou-Talalay's combination index were used to examine the synergistic effect of Chidamide and Cladribine on AML cell lines (U937, THP-1, and MV4-11) and primary AML cells. PI and Annexin-V/PI assays were used to detect the cell cycle effect and apoptosis effect, respectively. Global transcriptome analysis, RT-qPCR, c-MYC Knockdown, western blotting, co-immunoprecipitation, and chromatin immunoprecipitation assays were employed to explore the molecule mechanisms. RESULTS: The combination of Chidamide with Cladribine showed a significant increase in cell proliferation arrest, the G0/G1 phase arrest, and apoptosis compared to the single drug control in AML cell lines along with upregulated p21Waf1/Cip1 expression and downregulated CDK2/Cyclin E2 complex, and elevated cleaved caspase-9, caspase-3, and PARP. The combination significantly suppresses the c-MYC expression in AML cells, and c-MYC knockdown significantly increased the sensitivity of U937 cells to the combination compared to single drug control. Moreover, we observed HDAC2 interacts with c-Myc in AML cells, and we further identified that c-Myc binds to the promoter region of RCC1 that also could be suppressed by the combination through c-Myc-dependent. Consistently, a positive correlation of RCC1 with c-MYC was observed in the AML patient cohort. Also, RCC1 and HDAC2 high expression are associated with poor survival in AML patients. Finally, we also observed the combination significantly suppresses cell growth and induces the apoptosis of primary cells in AML patients with AML1-ETO fusion, c-KIT mutation, MLL-AF6 fusion, FLT3-ITD mutation, and in a CMML-BP patient with complex karyotype. CONCLUSIONS: Our results demonstrated the synergistic effect of Chidamide with Cladribine on cell growth arrest, cell cycle arrest, and apoptosis in AML and primary cells with genetic defects by targeting HDAC2/c-Myc/RCC1 signaling in AML. Our data provide experimental evidence for the undergoing clinical trial (Clinical Trial ID: NCT05330364) of Chidamide plus Cladribine as a new potential regimen in AML.

8.
Adv Biol Regul ; 88: 100942, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36621151

RESUMEN

Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.


Asunto(s)
Leucemia , Transducción de Señal , Humanos , Transducción de Señal/genética , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Genes Supresores de Tumor , Leucemia/genética , Fosforilación , Regulación de la Expresión Génica
9.
Nature ; 611(7935): 387-398, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36289338

RESUMEN

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.


Asunto(s)
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilación de ADN , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiones Promotoras Genéticas , Elementos de Facilitación Genéticos , Silenciador del Gen , Reproducibilidad de los Resultados , Sistemas CRISPR-Cas , Análisis de Secuencia , ADN (Citosina-5-)-Metiltransferasas , Regulación Leucémica de la Expresión Génica
11.
Adv Med Educ Pract ; 13: 1039-1050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120395

RESUMEN

Purpose: Clinician-scientists have a high attrition rate at the junior-faculty level, before they gain independent funding. We identified the lack of skill set, clinician-scientist community and collaboration between clinician-scientists and clinicians with predominantly clinical duties, as key problems in our medium-size college of medicine. Methods: We designed a novel two-year educational program, the Clinician-scientist Faculty Mentoring program (FAME) specifically to target junior clinician-scientists. The program enrollment included both lab-based, "traditional" and "non-traditional" clinician-scientists, with predominantly clinical duties and limited time for research. The curriculum included the novel educational tools: Emerging technology seminars and mentored work-in-progress research seminars, integrated with mock grant review. Results: The first class enrolled 17 clinician-scientists with diverse clinical subspecialty, previous research training, and protected research time. After two years in the program, the self-assessment of FAME scholars demonstrated strong improvement in grantsmanship skills, career development, emerging technologies, and the sense of community and collaboration. Compared to the period before initiating FAME, scholars increased annual scholarly output by 65% and new extramural funding by >20-fold ($0.189 vs $4.0 million) following completion of FAME. The "traditional" clinician-scientists, who had >50% research time, increased new extramural funding by ~25-fold ($0.134 vs $3.336 million), whereas "non-traditional" clinician-scientists who had ≤50% research time increased new extramural funding by >13-fold. Conclusion: Results suggest that a training program tailored specifically to clinician-scientists leads to increased scholarly productivity and grant funding regardless of research background. Implementing this type of training program nationally, with inclusion of clinician-scientists with various amounts of protected time for research, will help both "traditional" and "non-traditional" clinician-scientists to obtain a substantial independent extramural funding, fulfill their scholarly potential, and enhance their sense of community. Our model would be particularly useful for small-to-medium sized academic institutions, who have a limited clinician-scientist workforce facing competing health care system needs.

12.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887320

RESUMEN

Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Selenio , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Neoplasias/tratamiento farmacológico , Calidad de Vida , Selenio/metabolismo
13.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613920

RESUMEN

Cytokine receptor-like factor 2 B-cell acute lymphoblastic leukemia (CRLF2 B-ALL) is a high-risk subtype characterized by CRLF2 overexpression with poor survival rates in children and adults. CRLF2 and interleukin-7 receptor alpha (IL-7Rα) form a receptor for the cytokine thymic stromal lymphopoietin (TSLP), which induces JAK/STAT and PI3K/AKT/mTOR pathway signals. Previous studies from our group showed that low TSLP doses increased STAT5, AKT, and S6 phosphorylation and contributed to CRLF2 B-ALL cell survival. Here we investigated the role of TSLP in the survival and proliferation of CRLF2 B-ALL cells in vitro and in vivo. We hypothesized that high doses of TSLP increase CRLF2 signals and contribute to increased proliferation of CRLF2 B-ALL cells in vitro and in vivo. Interestingly, we observed the opposite effect. Specifically, high doses of TSLP induced apoptosis in human CRLF2 B-ALL cell lines in vitro, prevented engraftment of CRLF2 B-ALL cells, and prolonged the survival of +TSLP patient-derived-xenograft mice. Mechanistically, we showed that high doses of TSLP induced loss of its receptor and loss of CRLF2 signals in vitro. These results suggest that high doses of TSLP could be further investigated as a potential therapy for the treatment of CRLF2 B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Linfopoyetina del Estroma Tímico , Animales , Humanos , Ratones , Citocinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transducción de Señal
14.
Immunobiology ; 226(6): 152150, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34735924

RESUMEN

Macrophages play an important role in maintaining tissue homeostasis, from regulating the inflammatory response to pathogens to resolving inflammation and aiding tissue repair. The surfactant protein A (SP-A) receptor SP-R210 (MYO18A) has been shown to affect basal and inflammatory macrophage states. Specifically, disruption of the longer splice isoform SP-R210L/MYO18Aα renders macrophages hyper-inflammatory, although the mechanism by which this occurs is not well understood. We asked whether disruption of the L isoform led to the hyper-inflammatory state via alteration of global genomic responses. RNA sequencing analysis of L isoform-deficient macrophages (SP-R210L(DN)) revealed basal and influenza-induced upregulation of genes associated with inflammatory pathways, such as TLR, RIG-I, NOD, and cytoplasmic DNA signaling, whereas knockout of both SP-R210 isoforms (L and S) only resulted in increased RIG-I and NOD signaling. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis showed increased genome-wide deposition of the pioneer transcription factor PU.1 in SP-R210L(DN) cells, with increased representation around genes relevant to inflammatory pathways. Additional ChIP-seq analysis of histone H3 methylation marks showed decreases in both repressive H3K9me3 and H3K27me3 marks with a commensurate increase in transcriptionally active (H3K4me3) histone marks in the L isoform deficient macrophages. Influenza A virus (IAV) infection, known to stimulate a wide array of anti-viral responses, caused a differential redistribution of PU.1 binding between proximal promoter and distal sites and decoupling from Toll-like receptor regulated gene promoters in SP-R210L(DN) cells. These finding suggest that the inflammatory differences seen in SP-R210L-deficient macrophages are a result of transcriptional differences that are mediated by epigenetic changes brought about by differential expression of the SP-R210 isoforms. This provides an avenue to explore how the signaling pathways downstream of the receptor and the ligands can modulate the macrophage inflammatory response.


Asunto(s)
Adaptación Biológica/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Miosinas/genética , Animales , Biomarcadores , Línea Celular , Susceptibilidad a Enfermedades/inmunología , Epigenómica/métodos , Genómica/métodos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunofenotipificación , Ratones , Miosinas/deficiencia , Isoformas de Proteínas , Células RAW 264.7 , Transducción de Señal
15.
Cancers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638385

RESUMEN

The poor prognosis of acute myeloid leukemia (AML) and the highly heterogenous nature of the disease motivates targeted gene therapeutic investigations. Rho-associated protein kinases (ROCKs) are crucial for various actin cytoskeletal changes, which have established malignant consequences in various cancers, yet are still not being successfully utilized clinically towards cancer treatment. This work establishes the therapeutic activity of ROCK inhibitor (5Z)-2-5-(1H-pyrrolo[2,3-b]pyridine-3-ylmethylene)-1,3-thiazol-4(5H)-one (DJ4) in both in vitro and in vivo preclinical models of AML to highlight the potential of this class of inhibitors. Herein, DJ4 induced cytotoxic and proapoptotic effects in a dose-dependent manner in human AML cell lines (IC50: 0.05-1.68 µM) and primary patient cells (IC50: 0.264-13.43 µM); however, normal hematopoietic cells were largely spared. ROCK inhibition by DJ4 disrupts the phosphorylation of downstream targets, myosin light chain (MLC2) and myosin-binding subunit of MLC phosphatase (MYPT), yielding a potent yet selective treatment response at micromolar concentrations, from 0.02 to 1 µM. Murine models injected with luciferase-expressing leukemia cell lines subcutaneously or intravenously and treated with DJ4 exhibited an increase in overall survival and reduction in disease progression relative to the vehicle-treated control mice. Overall, DJ4 is a promising candidate to utilize in future investigations to advance the current AML therapy.

17.
Leukemia ; 35(5): 1267-1278, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33531656

RESUMEN

Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.


Asunto(s)
Antineoplásicos/uso terapéutico , Linfocitos B/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Serina-Treonina Quinasas TOR/genética , Quinasa de la Caseína II/genética , Línea Celular , Línea Celular Tumoral , Niño , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Células HEK293 , Humanos , Naftiridinas/farmacología , Fenazinas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transducción de Señal/efectos de los fármacos
18.
Acad Med ; 96(4): 490-494, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33332912

RESUMEN

There are increasing needs for physician-investigators to translate the rapid expansion of knowledge, technology/interventions, and big data into the clinical realm at a time of increasing age-related disabilities and communicable diseases. Yet, the number of physician-investigators has continued to decline, and only a small number of medical school graduates in the United States are actively engaged in research. This problem may be particularly pronounced in small- and medium-sized academic institutions due to more limited educational and mentoring infrastructure. Neither efforts by the federal government nor isolated institutional programs alone have been effective yet in solving this problem. This article describes an integrated institutional strategy undertaken at Penn State College of Medicine that is focused on developing and sustaining a physician-investigator workforce. Key elements of this strategy are new programs to close gaps in the professional life cycle of physician-investigators, dedicated senior leaders collaborating with an experienced and diverse advisory committee, and a data-driven approach to programmatic evaluation. In this article, the implementation of integrated institutional programs including Institutional Mock Review for evaluation of grant proposals before submission, physician-scientist faculty mentoring, and effort matching programs are described. Detailed tactics are offered for tailoring these programs to a particular institution's background to maximize both efficiency and sustainability. The overarching strategy includes engaging multidisciplinary faculty as mentors and mentees, partnering with both clinical and basic science departments, integrating new programs with established approaches, and cultivating an emerging generation of physician-investigators as near-peer mentors and future leaders. This approach may serve as a useful paradigm for building an environment to nurture junior physician-investigators at other mid-sized academic institutions and may also have value for larger institutions in which there is fragmentation of the efforts to sustain the research careers of physicians.


Asunto(s)
Investigación Biomédica/tendencias , Selección de Profesión , Educación Médica/tendencias , Estudios Interdisciplinarios/tendencias , Tutoría/tendencias , Investigadores/educación , Investigación Biomédica Traslacional/educación , Adulto , Investigación Biomédica/estadística & datos numéricos , Educación Médica/estadística & datos numéricos , Femenino , Predicción , Humanos , Masculino , Tutoría/estadística & datos numéricos , Persona de Mediana Edad , Investigación Biomédica Traslacional/estadística & datos numéricos , Investigación Biomédica Traslacional/tendencias , Estados Unidos
19.
Mol Biol Rep ; 47(12): 9931-9937, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33159234

RESUMEN

Among brain tumors, Medulloblastoma (MB) is one of the most common, malignant, pediatric tumors of the cerebellum. It accounts for ~20% of all childhood central nervous system (CNS) tumors. Despite, tremendous advances in drug development processes, as well as novel drugs for MB the morbidity and mortality rates, remain high. Craniospinal radiation, high-dose chemotherapy, and surgical resection are the primary therapeutic strategies. Tremendous progress in the field of "genomics" with vast amounts of data has led to the identification of four distinct molecular subgroups in medulloblastoma: WNT group, SHH group, group-III, and group-IV. The identification of these subgroups has led to individualized treatment strategies for each subgroup. Here, we discuss the various molecular subgroups of medulloblastoma as well as the differences between them. We also highlight the latest treatment strategies available for medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas/clasificación , Meduloblastoma/clasificación , Humanos
20.
Blood ; 136(13): 1520-1534, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32396934

RESUMEN

High-risk B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive disease, often characterized by resistance to chemotherapy. A frequent feature of high-risk B-ALL is loss of function of the IKAROS (encoded by the IKZF1 gene) tumor suppressor. Here, we report that IKAROS regulates expression of the BCL2L1 gene (encodes the BCL-XL protein) in human B-ALL. Gain-of-function and loss-of-function experiments demonstrate that IKAROS binds to the BCL2L1 promoter, recruits histone deacetylase HDAC1, and represses BCL2L1 expression via chromatin remodeling. In leukemia, IKAROS' function is impaired by oncogenic casein kinase II (CK2), which is overexpressed in B-ALL. Phosphorylation by CK2 reduces IKAROS binding and recruitment of HDAC1 to the BCL2L1 promoter. This results in a loss of IKAROS-mediated repression of BCL2L1 and increased expression of BCL-XL. Increased expression of BCL-XL and/or CK2, as well as reduced IKAROS expression, are associated with resistance to doxorubicin treatment. Molecular and pharmacological inhibition of CK2 with a specific inhibitor CX-4945, increases binding of IKAROS to the BCL2L1 promoter and enhances IKAROS-mediated repression of BCL2L1 in B-ALL. Treatment with CX-4945 increases sensitivity to doxorubicin in B-ALL, and reverses resistance to doxorubicin in multidrug-resistant B-ALL. Combination treatment with CX-4945 and doxorubicin show synergistic therapeutic effects in vitro and in preclinical models of high-risk B-ALL. Results reveal a novel signaling network that regulates chemoresistance in leukemia. These data lay the groundwork for clinical testing of a rationally designed, targeted therapy that combines the CK2 inhibitor, CX-4945, with doxorubicin for the treatment of hematopoietic malignancies.


Asunto(s)
Quinasa de la Caseína II/genética , Resistencia a Antineoplásicos , Regulación Leucémica de la Expresión Génica , Factor de Transcripción Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína bcl-X/genética , Animales , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...