Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(28)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467066

RESUMEN

In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1-xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles.

2.
ACS Appl Mater Interfaces ; 16(3): 4108-4116, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193781

RESUMEN

We report the observation of a magnetocapacitance effect at the interface between Ni and epitaxial nonpolar BiInO3 thin films at room temperature. A detailed surface study using X-ray photoelectron spectroscopy (XPS) reveals the formation of an intermetallic Ni-Bi alloy at the Ni/BiInO3 interface and a shift in the Bi 4f and In 3d core levels to higher binding energies with increasing Ni thickness. The latter infers band bending in BiInO3, corresponding to the formation of a p-type Schottky barrier. The current-voltage characteristics of the Ni/BiInO3/(Ba,Sr)RuO3/NdScO3(110) heterostructure show a significant dependence on the applied magnetic field and voltage cycling, which can be attributed to voltage-controlled band bending and spin-polarized charge accumulation in the vicinity of the Ni/BiInO3 interface. The magnetocapacitance effect can be realized at room temperature without involving multiferroic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA