Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MAbs ; 13(1): 1919285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34074219

RESUMEN

The newly emerging variants of SARS-CoV-2 from South Africa (B.1.351/501Y.V2) and Brazil (P.1/501Y.V3) have led to a higher infection rate and reinfection of COVID-19 patients. We found that the mutations K417N, E484K, and N501Y within the receptor-binding domains (RBDs) of the virus could confer ~2-fold higher binding affinity to the human receptor, angiotensin converting enzyme 2 (ACE2), compared to the wildtype RBD. The mutated version of RBD also completely abolishes the binding of bamlanivimab, a therapeutic antibody, in vitro. Detailed analysis shows that the ~10-fold gain of binding affinity between ACE2 and Y501-RBD, which also exits in the high contagious variant B.1.1.7/501Y.V1 from the United Kingdom, is compromised by additional introduction of the K417/N/T mutation. Mutation of E484K leads to the loss of bamlanivimab binding to RBD, although this mutation does not affect the binding between RBD and ACE2.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Antivirales/metabolismo , COVID-19/virología , Mutación , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/diagnóstico , Interacciones Huésped-Patógeno , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Tratamiento Farmacológico de COVID-19
3.
bioRxiv ; 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33564771

RESUMEN

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing a world-wide pandemic. A variant of SARS-COV-2 (20I/501Y.V1) recently discovered in the United Kingdom has a single mutation from N501 to Y501 within the receptor binding domain (Y501-RBD), of the Spike protein of the virus. This variant is much more contagious than the original version (N501-RBD). We found that this mutated version of RBD binds to human Angiotensin Converting Enzyme 2 (ACE2) a ~10 times more tightly than the native version (N501-RBD). Modeling analysis showed that the N501Y mutation would allow a potential aromatic ring-ring interaction and an additional hydrogen bond between the RBD and ACE2. However, sera from individuals immunized with the Pfizer-BioNTech vaccine still efficiently block the binding of Y501-RBD to ACE2 though with a slight compromised manner by comparison with their ability to inhibit binding to ACE2 of N501-RBD. This may raise the concern whether therapeutic anti-RBD antibodies used to treat COVID-19 patients are still efficacious. Nevertheless, a therapeutic antibody, Bamlanivimab, still binds to the Y501-RBD as efficiently as its binds to N501-RBD.

4.
bioRxiv ; 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33619479

RESUMEN

We generated several versions of the receptor binding domain (RBD) of the Spike protein with mutations existing within newly emerging variants from South Africa and Brazil. We found that the mutant RBD with K417N, E484K, and N501Y exchanges has higher binding affinity to the human receptor compared to the wildtype RBD. This mutated version of RBD also completely abolishes the binding to a therapeutic antibody, Bamlanivimab, in vitro .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA