Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Heart Lung Transplant ; 43(2): 303-313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37783299

RESUMEN

BACKGROUND: Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. METHODS: Transcriptomics and proteomics analyses defined the pathways associated with cardiac magnetic resonance imaging (MRI)-derived values of RV hypertrophy, dilation, and dysfunction in control and pulmonary artery banded (PAB) pigs. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare molecular responses across species. RESULTS: PAB pigs displayed significant right ventricle/ventricular (RV) hypertrophy, dilation, and dysfunction as quantified by cardiac magnetic resonance imaging. Transcriptomic and proteomic analyses identified pathways associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the 3 species. FAO and ETC proteins and transcripts were mostly downregulated in rats but were predominately upregulated in PAB pigs, which more closely matched the human response. All species exhibited similar dysregulation of the dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy pathways. CONCLUSIONS: The porcine metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and pigs may more accurately recapitulate metabolic aspects of human RVF.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Derecha , Humanos , Ratas , Animales , Porcinos , Multiómica , Proteómica , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/patología , Función Ventricular Derecha , Modelos Animales de Enfermedad , Remodelación Ventricular/fisiología
2.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798212

RESUMEN

Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no approved treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. Here, we used transcriptomics and proteomics analyses to define the molecular pathways associated with cardiac MRI-derived values of RV hypertrophy, dilation, and dysfunction in pulmonary artery banded (PAB) piglets. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare the three species. Transcriptomic and proteomic analyses identified multiple pathways that were associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the three species. FAO and ETC proteins and transcripts were mostly downregulated in rats, but were predominately upregulated in PAB pigs, which more closely matched the human data. Thus, the pig PAB metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and that pigs more accurately recapitulate the metabolic aspects of human RVF.

3.
Pediatr Cardiol ; 42(3): 501-509, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33252768

RESUMEN

There are no reports on the performance of the arterial switch operation (ASO) in a normal heart with normally related great vessels. The objective of this study was to determine whether the ASO could be performed in a healthy animal model. Cardiopulmonary bypass (CPB) and coronary translocation techniques were used to perform ASO in neonatal piglets or a staged ASO with prior main pulmonary artery (PA) banding. Primary ASO was performed in four neonatal piglets. Coronary translocation was effective with angiograms confirming patency. Piglets could not be weaned from CPB due to right ventricle (RV) dysfunction. To improve RV function for the ASO, nine piglets had PA banding. All survived the procedure. Post-banding RV pressure increased from a mean of 20.3 ± 2.2 mmHg to 36.5 ± 7.3 mmHg (p = 0.007). At 58 ± 1 days post-banding, piglets underwent cardiac MRIs revealing RV hypertrophy, and RV pressure overload with mildly reduced RV function. Catheterization confirmed RV systolic pressures of 84.0 ± 6.7 mmHg with LV systolic pressure 83.3 ± 6.7 mmHg (p = 0.43). The remaining five PA banded piglets underwent ASO at 51 ± 0 days post-banding. Three of five were weaned from bypass with patent coronary arteries and adequate RV function. We were able to successfully perform an arterial switch with documented patent coronary arteries on standard anatomy great vessels in a healthy animal model. To our knowledge this is the first time this procedure has been successfully performed. The model may have implications for studying the failing systemic RV, and may support a novel approach for management of borderline, pulsatile left ventricles.


Asunto(s)
Operación de Switch Arterial/métodos , Ventrículos Cardíacos/cirugía , Angiografía/métodos , Animales , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Modelos Animales , Arteria Pulmonar/cirugía , Porcinos , Transposición de los Grandes Vasos/cirugía , Procedimientos Quirúrgicos Vasculares/métodos , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/cirugía , Función Ventricular Derecha
4.
Stem Cells Dev ; 28(16): 1089-1103, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31154937

RESUMEN

Specification of the mesodermal lineages requires a complex set of morphogenetic events orchestrated by interconnected signaling pathways and gene regulatory networks. The transcription factor Sox7 has critical functions in differentiation of multiple mesodermal lineages, including cardiac, endothelial, and hematopoietic. Using a doxycycline-inducible mouse embryonic stem cell line, we have previously shown that expression of Sox7 in cardiovascular progenitor cells promotes expansion of endothelial progenitor cells (EPCs). In this study, we show that the ability of Sox7 to promote endothelial cell fate occurs at the expense of the cardiac lineage. Using ChIP-Seq coupled with ATAC-Seq we identify downstream target genes of Sox7 in cardiovascular progenitor cells and by integrating these data with transcriptomic analyses, we define Sox7-dependent gene programs specific to cardiac and EPCs. Furthermore, we demonstrate a protein-protein interaction between SOX7 and GATA4 and provide evidence that SOX7 interferes with the transcriptional activity of GATA4 on cardiac genes. In addition, we show that Sox7 modulates WNT and BMP signaling during cardiovascular differentiation. Our data represent the first genome-wide analysis of Sox7 function and reveal a critical role for Sox7 in regulating signaling pathways that affect cardiovascular progenitor cell differentiation.


Asunto(s)
Sistema Cardiovascular/metabolismo , Factores de Transcripción SOXF/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Endotelio/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Mesodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo
5.
Stem Cells Dev ; 25(3): 277-84, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26573225

RESUMEN

ATP-binding cassette transporter subfamily G member 2 (Abcg2)-expressing cardiac-side population cells have been identified in the developing and adult heart, although the role they play in mammalian heart growth and regeneration remains unclear. In this study, we use genetic lineage tracing to follow the cell fate of Abcg2-expressing cells in the embryonic and adult heart. During cardiac embryogenesis, the Abcg2 lineage gives rise to multiple cardiovascular cell types, including cardiomyocytes, endothelial cells, and vascular smooth muscle cells. This capacity for Abcg2-expressing cells to contribute to cardiomyocytes decreases rapidly during the postnatal period. We further tested the role of the Abcg2 lineage following myocardial injury. One month following ischemia reperfusion injury, Abcg2-expressing cells contributed significantly to the endothelial cell lineage, however, there was no contribution to regenerated cardiomyocytes. Furthermore, consistent with previous results showing that Abcg2 plays an important cytoprotective role during oxidative stress, we show an increase in Abcg2 labeling of the vasculature, a decrease in the scar area, and a moderate improvement in cardiac function following myocardial injury. We have uncovered a difference in the capacity of Abcg2-expressing cells to generate the cardiovascular lineages during embryogenesis, postnatal growth, and cardiac regeneration.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Linaje de la Célula , Corazón Fetal/citología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/citología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Corazón Fetal/metabolismo , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
6.
Stem Cell Rev Rep ; 11(5): 710-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26085192

RESUMEN

Congenital heart disease (CHD) remains a significant health problem, with a growing population of survivors with chronic disease. Despite intense efforts to understand the genetic basis of CHD in humans, the etiology of most CHD is unknown. Furthermore, new models of CHD are required to better understand the development of CHD and to explore novel therapies for this patient population. In this review, we highlight the role that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes can serve to enhance our understanding of the development, pathophysiology and potential therapeutic targets for CHD. We highlight the use of hiPSC-derived cardiomyocytes to model gene regulatory interactions, cell-cell interactions and tissue interactions contributing to CHD. We further emphasize the importance of using hiPSC-derived cardiomyocytes as personalized research models. The use of hiPSCs presents an unprecedented opportunity to generate disease-specific cellular models, investigate the underlying molecular mechanisms of disease and uncover new therapeutic targets for CHD.


Asunto(s)
Cardiopatías/patología , Corazón/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Organogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Humanos
7.
Dev Biol ; 371(1): 23-34, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22902898

RESUMEN

Amphibians have a remarkable capacity for limb regeneration. Following a severe injury, there is complete regeneration with restoration of the patterning and cellular architecture of the amputated limb. While studies have focused on the structural anatomical changes during amphibian limb regeneration, the signaling mechanisms that govern cellular dedifferentiation and blastemal progenitors are unknown. Here, we demonstrate the temporal and spatial requirement for hedgehog (Hh) signaling and its hierarchical correlation with respect to Wnt signaling during newt limb regeneration. While the dedifferentiation process of mature lineages does not depend on Hh signaling, the proliferation and the migration of the dedifferentiated cells are dependent on Hh signaling. Temporally controlled chemical inactivation of the Hh pathway indicates that Hh-mediated antero-posterior (AP) specification occurs early during limb regeneration and that Hh is subsequently required for expansion of the blastemal progenitors. Inhibition of Hh signaling results in G0/G1 arrest with a concomitant reduction in S-phase and G2/M population in myogenic progenitors. Furthermore, Hh inhibition leads to reduced Pax7-positive cells and fewer regenerating fibers relative to control tissue. We demonstrate that activation of Wnt signaling rescues the inhibition of Hh pathway mainly by enhancing proliferative signals, possibly mediated through TCF4 activity. Collectively, our results demonstrate coordinated signaling of Hh and Wnt activities in regulating blastemal progenitors and their hierarchical positioning during limb regeneration.


Asunto(s)
Extremidades/fisiología , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/fisiología , Regeneración/fisiología , Salamandridae/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Puntos de Control del Ciclo Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Cartilla de ADN/genética , Citometría de Flujo , Inmunohistoquímica , Luciferasas , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/fisiología
8.
J Cell Biol ; 195(1): 147-63, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21949413

RESUMEN

Skeletal muscle contains progenitor cells (satellite cells) that maintain and repair muscle. It also contains muscle side population (SP) cells, which express Abcg2 and may participate in muscle regeneration or may represent a source of satellite cell replenishment. In Abcg2-null mice, the SP fraction is lost in skeletal muscle, although the significance of this loss was previously unknown. We show that cells expressing Abcg2 increased upon injury and that muscle regeneration was impaired in Abcg2-null mice, resulting in fewer centrally nucleated myofibers, reduced myofiber size, and fewer satellite cells. Additionally, using genetic lineage tracing, we demonstrate that the progeny of Abcg2-expressing cells contributed to multiple cell types within the muscle interstitium, primarily endothelial cells. After injury, Abcg2 progeny made a minor contribution to regenerated myofibers. Furthermore, Abcg2-labeled cells increased significantly upon injury and appeared to traffic to muscle from peripheral blood. Together, these data suggest an important role for Abcg2 in positively regulating skeletal muscle regeneration.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Fibras Musculares Esqueléticas/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/citología , Células Satélite del Músculo Esquelético/citología
9.
Dev Biol ; 313(1): 58-66, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18022152

RESUMEN

Nkx2.2 is a homeodomain-containing transcription factor essential for pancreatic islet cell specification. In this study we investigate the role of Nkx2.2 within the small intestine. We have determined that Nkx2.2 is expressed at the onset of intestinal epithelial cell differentiation in specific intestinal cell populations, including a subset of enteroendocrine cells. Similar to its role in the pancreatic islet, Nkx2.2 regulates cell fate choices within the intestinal enteroendocrine population; in the Nkx2.2 null mice, several hormone-producing enteroendocrine cell populations are absent or reduced and the ghrelin-producing cell population is upregulated. The remaining intestinal cell populations, including the paneth cells, goblet cells, and enterocytes appear to be unaffected by the loss of Nkx2.2. Furthermore, similar to the pancreatic islet, Nkx2.2 appears to function upstream of Pax6 in regulating intestinal cell fates; Pax6 mRNA and protein expression is decreased in the Nkx2.2 null mice. These studies identify a novel role for Nkx2.2 in intestinal endocrine cell development and reveal the regulatory similarities between cell type specification in the pancreatic islet and in the enteroendocrine population of the intestine.


Asunto(s)
Linaje de la Célula , Glándulas Endocrinas/citología , Proteínas de Homeodominio/fisiología , Intestino Delgado/citología , Intestino Delgado/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Glándulas Endocrinas/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Ratones , Proteínas de Pez Cebra
10.
Diabetes ; 56(8): 1999-2007, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17456846

RESUMEN

Nkx2.2 is a homeodomain transcription factor that is critical for pancreatic endocrine cell specification and differentiation in the developing mouse embryo. The purpose of this study was to determine whether Nkx2.2 is also required for the maintenance and function of the mature beta-cell in the postnatal islet. We have demonstrated previously that a repressor derivative of Nkx2.2 can functionally substitute for endogenous Nkx2.2 to fully restore alpha- and immature beta-cells in the embryonic islet; however, Nkx2.2 activator functions appear to be required to form a functional beta-cell. In this study, we have created transgenic mouse lines to express the Nkx2.2-repressor derivative in the mature beta-cell in the presence of endogenous Nkx2.2. The transgenic mice were assessed for beta-cell function, overall islet structure, and expression of beta-cell-specific markers. Using this transgenic approach, we have determined that the Nkx2.2-repressor derivative disrupts endogenous Nkx2.2 expression in adult mice and causes downregulation of the mature beta-cell factors, MafA and Glut2. Consistently, the Nkx2.2-repressor mice display reduced insulin gene expression and pancreatic insulin content and impaired insulin secretion. At weaning, the male Nkx2.2-repressor mice are overtly diabetic and all Nkx2.2-repressor transgenic mice exhibit glucose intolerance. Furthermore, the loss of beta-cell function in the Nkx2.2-repressor transgenic mice is associated with disrupted islet architecture. These studies indicate a previously undiscovered role for Nkx2.2 in the maintenance of mature beta-cell function and the formation of normal islet structure.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento , Animales , Biomarcadores , Glucemia/metabolismo , Femenino , Transportador de Glucosa de Tipo 2/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Masculino , Ratones , Ratones Transgénicos , Caracteres Sexuales , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra
11.
Development ; 134(3): 515-23, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17202186

RESUMEN

The homeodomain protein Nkx2.2 (Nkx2-2) is a key regulator of pancreatic islet cell specification in mice; Nkx2.2 is essential for the differentiation of all insulin-producing beta-cells and of the majority of glucagon-producing alpha-cells, and, in its absence, these cell types are converted to a ghrelin cell fate. To understand the molecular functions of Nkx2.2 that regulate these early cell-fate decisions during pancreatic islet development, we created Nkx2.2-dominant-derivative transgenic mice. In the absence of endogenous Nkx2.2, the Nkx2.2-Engrailed-repressor derivative is sufficient to fully rescue glucagon-producing alpha-cells and to partially rescue insulin-producing beta-cells. Interestingly, the insulin-positive cells that do form in the rescued mice do not express the mature beta-cell markers MafA or Glut2 (Slc2a2), suggesting that additional activator functions of Nkx2.2 are required for beta-cell maturation. To explore the mechanism by which Nkx2.2 functions as a repressor in the islet, we assessed the pancreatic expression of the Groucho co-repressors, Grg1, Grg2, Grg3 and Grg4 (Tle1-Tle4), which have been shown to interact with and modulate Nkx2.2 function. We determined that Grg3 is highly expressed in the embryonic pancreas in a pattern similar to Nkx2.2. Furthermore, we show that Grg3 physically interacts with Nkx2.2 through its TN domain. These studies suggest that Nkx2.2 functions predominantly as a transcriptional repressor during specification of endocrine cell types in the pancreas.


Asunto(s)
Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Proteínas Co-Represoras , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Islotes Pancreáticos/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas , Proteínas/genética , Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra
12.
Mol Cell Proteomics ; 3(10): 960-9, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15238602

RESUMEN

Using DNA microarrays together with quantitative proteomic techniques (ICAT reagents, two-dimensional DIGE, and MS), we evaluated the correlation of mRNA and protein levels in two hematopoietic cell lines representing distinct stages of myeloid differentiation, as well as in the livers of mice treated for different periods of time with three different peroxisome proliferative activated receptor agonists. We observe that the differential expression of mRNA (up or down) can capture at most 40% of the variation of protein expression. Although the overall pattern of protein expression is similar to that of mRNA expression, the incongruent expression between mRNAs and proteins emphasize the importance of posttranscriptional regulatory mechanisms in cellular development or perturbation that can be unveiled only through integrated analyses of both proteins and mRNAs.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Proteómica , Animales , Línea Celular , Medios de Cultivo Condicionados , Electroforesis en Gel Bidimensional , Variación Genética , Células Madre Hematopoyéticas/citología , Cinética , Hígado/efectos de los fármacos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Células Progenitoras Mieloides/citología , Mielopoyesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Proliferadores de Peroxisomas/farmacología , Procesamiento Proteico-Postraduccional , Proteínas/análisis , Proteínas/metabolismo , Pirimidinas/farmacología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacología
14.
Blood ; 99(2): 488-98, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11781229

RESUMEN

Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Animales , ADN Complementario/genética , Biblioteca de Genes , Hematopoyesis , Células Madre Hematopoyéticas/clasificación , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Biosíntesis de Proteínas , Proteínas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...