Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Anal Chem ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044395

RESUMEN

MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.

2.
ACS Appl Mater Interfaces ; 16(26): 34409-34418, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889207

RESUMEN

Nanosizing drug crystals has emerged as a successful approach to enabling oral bioavailability, as increasing drug crystal surface area improves dissolution kinetics and effective solubility. Recently, bottom-up methods have been developed to directly assemble nanosized crystals by leveraging polymer and surfactant excipients during crystallization to control crystal size, morphology, and structure. However, while significant research has investigated how polymers and other single additives inhibit or promote crystallization in pharmaceutical systems, there is little work studying the mechanistic interactions of multiple excipients on drug crystal structure and the extent of crystallinity, which can influence formulation performance. This study explores how the structure and crystallinity of a model hydrophobic drug crystal, fenofibrate, change as a result of competitive interfacial chemisorption between common nonionic surfactants (polysorbate 80 and sorbitan monooleate) and a surface-active polymer excipient (methylcellulose). Classical molecular dynamics simulations highlight how key intermolecular interactions, including surfactant-polymer complexation and surfactant screening of the crystal surface, modify the resulting crystal structure. In parallel, experiments generating drug nanocrystals in hydrogel thin films validate that drug crystallinity increases with an increasing weight fraction of surfactant. Simulation results reveal a connection between accelerated dynamics in the bulk crystal and the experimentally measured extent of crystallinity. To our knowledge, these are the first simulations that directly characterize structural changes in a drug crystal as a result of excipient surface composition and relate the experimental extent of crystallinity to structural changes in the molecular crystal. Our approach provides a mechanistic understanding of crystallinity in nanocrystallization, which can expand the range of orally deliverable small molecule therapies.


Asunto(s)
Cristalización , Fenofibrato , Simulación de Dinámica Molecular , Nanopartículas , Tensoactivos , Tensoactivos/química , Nanopartículas/química , Fenofibrato/química , Hexosas/química , Polisorbatos/química , Metilcelulosa/química , Propiedades de Superficie , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química
3.
Soft Matter ; 20(22): 4474-4487, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787762

RESUMEN

Solution processing of 2D materials such as graphene is important for applications thereof, yet a complete fundamental understanding of how 2D materials behave dynamically in solution is lacking. Here, we extend previous work by Silmore et al., Soft Matter, 2021, 17(18), 4707-4718 by adding short-ranged Lennard-Jones interactions to 2D sheets in shear flow. We find that the addition of these interactions allows for a rich landscape of conformations which depend on the balance between shear strength, bending rigidity, and interaction strength as well as the initial configuration of the sheet. We explore this conformational space and classify sheets as flat, tumbling, 1D folded, or 2D folded based on their conformational properties. We use kinetic and energetic arguments to explain why sheets adopt certain conformations within the folded regime. Finally, we calculate the stresslet and find that, even in the absence of thermal fluctuations and multiple sheet interactions, shear-thinning followed by shear-thickening behavior can appear.

4.
Small ; : e2402525, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801302

RESUMEN

Persistent organic pollutants (POPs), including xenoestrogens and polyfluoroalkyl substances (PFAS), demand urgent global intervention. Fenton oxidation, catalyzed by iron ions, offers a cost-effective means to degrade POPs. However, numerous challenges like acid dependency, catalyst loss, and toxic waste generation hinder practical application. Efforts to create long-lasting heterogeneous Fenton catalysts, capable of simultaneously eliminating acid requirements, sustaining rapid kinetics, and retaining iron efficiently, have been unsuccessful. This study introduces an innovative heterogeneous zwitterionic hydrogel-based Fenton catalyst, surmounting these challenges in a cost-effective and scalable manner. The hydrogel, hosting individually complexed iron ions in a porous scaffold, exhibits substantial effective surface area and kinetics akin to homogeneous Fenton reactions. Complexed ions within the hydrogel can initiate Fenton degradation at neutral pH, eliminating acid additions. Simultaneously, the zwitterionic hydrogel scaffold, chosen for its resistance to Fenton oxidation, forms strong bonds with iron ions, enabling prolonged reuse. Diverging from existing designs, the catalyst proves compatible with UV-Fenton processes and achieves rapid self-regeneration during operation, offering a promising solution for the efficient and scalable degradation of POPs. The study underscores the efficacy of the approach by demonstrating the swift degradation of three significant contaminants-xenoestrogens, pesticides, and PFAS-across multiple cycles at trace concentrations.

5.
Nano Lett ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437028

RESUMEN

Nanopore-based sensing platforms have transformed single-molecule detection and analysis. The foundation of nanopore translocation experiments lies in conductance measurements, yet existing models, which are largely phenomenological, are inaccurate in critical experimental conditions such as thin and tightly fitting pores. Of the two components of the conductance blockade, channel and access resistance, the access resistance is poorly modeled. We present a comprehensive investigation of the access resistance and associated conductance blockade in thin nanopore membranes. By combining a first-principles approach, multiscale modeling, and experimental validation, we propose a unified theoretical modeling framework. The analytical model derived as a result surpasses current approaches across a broad parameter range. Beyond advancing our theoretical understanding, our framework's versatility enables analyte size inference and predictive insights into conductance blockade behavior. Our results will facilitate the design and optimization of nanopore devices for diverse applications, including nanopore base calling and data storage.

6.
iScience ; 26(8): 107452, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37593455

RESUMEN

The fast pace of breakthroughs in cancer immunotherapy, combined with the new paradigm of moving toward high-concentration dosages and combinatorial treatments, is generating new challenges in the formulation of biologics. To address these challenges, we describe a method of formulation that enables high-concentration injectable and stable formulation of biologics as amorphous solids in aqueous suspension. This technology combines the benefits of liquid formulation with the stability of solid formulation and eliminates the need for drying and reconstitution. This widely applicable formulation integrates the amorphous solid forms of antibodies with the injectability, lubricity, and tunability of soft alginate hydrogel particles using a minimal process. The platform was evaluated for anti-PD-1 antibody pembrolizumab and human immunoglobulin G at concentrations up to 300 mg/mL with confirmed quality after release. The soft nature of the hydrogel matrix allowed packing the particles to high volume fractions.

7.
Adv Healthc Mater ; 12(31): e2301667, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37507108

RESUMEN

Hydrophobic active pharmaceutical ingredients (APIs) are ubiquitous in the drug development pipeline, but their poor bioavailability often prevents their translation into drug products. Industrial processes to formulate hydrophobic APIs are expensive, difficult to optimize, and not flexible enough to incorporate customizable drug release profiles into drug products. Here, a novel, dual-responsive gelation process that exploits orthogonal thermo-responsive and ion-responsive gelations is introduced. This one-step "dual gelation" synthesizes core-shell (methylcellulose-alginate) hydrogel particles and encapsulates drug-laden nanoemulsions in the hydrogel matrices. In situ crystallization templates drug nanocrystals inside the polymeric core, while a kinetically stable amorphous solid dispersion is templated in the shell. Drug release is explored as a function of particle geometry, and programmable release is demonstrated for various therapeutic applications including delayed pulsatile release and sequential release of a model fixed-dose combination drug product of ibuprofen and fenofibrate. Independent control over drug loading between the shell and the core is demonstrated. This formulation approach is shown to be a flexible process to develop drug products with biocompatible materials, facile synthesis, and precise drug release performance. This work suggests and applies a novel method to leverage orthogonal gel chemistries to generate functional core-shell hydrogel particles.


Asunto(s)
Hidrogeles , Nanopartículas , Hidrogeles/química , Sistemas de Liberación de Medicamentos , Polímeros/química , Materiales Biocompatibles/química , Nanopartículas/química , Liberación de Fármacos
8.
J Pharm Sci ; 112(8): 2115-2123, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160228

RESUMEN

Commercialization of most promising active pharmaceutical ingredients (APIs) is impeded either by poor bioavailability or challenging physical properties leading to costly manufacture. Bioavailability of ionizable hydrophobic APIs can be enhanced by its conversion to salt form. While salt form of the API presents higher solution concentration than the non-ionized form, poor physical properties resulting from particle anisotropy or non-ideal morphology (needles) and particle size distribution not meeting dissolution rate targets can still inhibit its commercial translation. In this regard, API physical properties can be improved through addition of non-active components (excipients or carriers) during API manufacture. In this work, a facile method to perform reactive crystallization of an API salt in presence of the microporous environment of a hydrogel microparticle is presented. Specifically, the reaction between acidic antiretroviral API, raltegravir and base potassium hydroxide is performed in the presence of polyethylene glycol diacrylamide hydrogel microparticles. In this bottom-up approach, the spherical template hydrogel microparticles for the reaction lead to monodisperse composites loaded with inherently micronized raltegravir-potassium crystals, thus improving API physical properties without hampering bioavailability. Overall, this technique provides a novel approach to reactive crystallization while maintaining the API polymorph and crystallinity.


Asunto(s)
Hidrogeles , Cristalización , Raltegravir Potásico , Tamaño de la Partícula , Solubilidad
9.
Adv Healthc Mater ; 12(15): e2202370, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36745878

RESUMEN

Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL-1 antibody are achieved with encapsulation efficiencies in the range of 89-97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles' disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated.


Asunto(s)
Alginatos , Anticuerpos Monoclonales , Ratas , Animales , Humanos , Alginatos/química , Ratas Wistar , Anticuerpos Monoclonales/farmacocinética , Tejido Subcutáneo/metabolismo , Hidrogeles/química
10.
Mol Pharm ; 19(11): 4345-4356, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36268657

RESUMEN

Co-processing active pharmaceutical ingredients (APIs) with excipients is a promising particle engineering technique to improve the API physical properties, which can lead to more robust downstream drug product manufacturing and improved drug product attributes. Excipients provide control over critical API attributes like particle size and solid-state outcomes. Eudragit E100 is a widely used polymeric excipient to modulate drug release. Being cationic, it is primarily employed as a precipitation inhibitor to stabilize amorphous solid dispersions. In this work, we demonstrate how co-processing of E100 with naproxen (NPX) (a model hydrophobic API) into monodisperse emulsions via droplet microfluidics followed by solidification via solvent evaporation allows the facile fabrication of compact, monodisperse, and spherical particles with an expanded range of solid-state outcomes spanning from amorphous to crystalline forms. Low E100 concentrations (≤26% w/w) yield crystalline microparticles with a stable NPX polymorph distributed uniformly across the matrix at a high drug loading (∼89% w/w). Structurally, E100 incorporation reduces the size of primary particles comprising the co-processed microparticles in comparison to neat API microparticles made using the same technique and the as-received API powder. This reduction in primary particle size translates into an increased internal porosity of the co-processed microparticles, with specific surface area and pore volume ∼9 times higher than the neat API microparticles. These E100-enabled structural modifications result in faster drug release in acidic media compared to neat API microparticles. Additionally, E100-NPX microparticles have a significantly improved flowability compared to neat API microparticles and as-received API powder. Overall, this study demonstrates a facile microfluidics-based co-processing method that broadly expands the range of solid-state outcomes obtainable with E100 as an excipient, with multiscale control over the key attributes and performance of hydrophobic API-laden microparticles.


Asunto(s)
Química Farmacéutica , Excipientes , Excipientes/química , Química Farmacéutica/métodos , Polvos , Solubilidad , Microfluídica , Naproxeno/química , Tamaño de la Partícula , Composición de Medicamentos/métodos
11.
Microorganisms ; 10(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296296

RESUMEN

The interactions between marine bacteria and particulate matter play a pivotal role in the biogeochemical cycles of carbon and associated inorganic elements in the oceans. Eutrophic plumes typically form around nutrient-releasing particles and host intense bacterial activities. However, the potential of bacteria to reshape the nutrient plumes remains largely unexplored. We present a high-resolution numerical analysis for the impacts of nutrient uptake by free-living bacteria on the pattern of dissolution around slow-moving particles. At the single-particle level, the nutrient field is parameterized by the Péclet and Damköhler numbers (0 < Pe < 1000, 0 < Da < 10) that quantify the relative contribution of advection, diffusion and uptake to nutrient transport. In spite of reducing the extent of the nutrient plume in the wake of the particle, bacterial uptake enhances the rates of particle dissolution and nutrient depletion. These effects are amplified when the uptake timescale is shorter than the plume lifetime (Pe/Da < 100, Da > 0.0001), while otherwise they are suppressed by advection or diffusion. Our analysis suggests that the quenching of eutrophic plumes is significant for individual phytoplankton cells, as well as marine aggregates with sizes ranging from 0.1 mm to 10 mm and sinking velocities up to 40 m per day. This microscale process has a large potential impact on microbial growth dynamics and nutrient cycling in marine ecosystems.

12.
Soft Matter ; 18(36): 6848-6856, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36043375

RESUMEN

Non-spherical hydrogel particles are of fundamental interest and can find use in a variety of applications ranging from pharmaceuticals to biomedical to food. Here, we report a new method that leverages the yield stress property of viscoplastic fluids to synthesize shape-engineered alginate particles. By dripping an aqueous viscoplastic solution composed of sodium alginate and a yield-stress material into an ionic gelation bath, droplets are controllably deformed and crosslinked, producing a wide assortment of shapes. We find that by tuning the yield stress of the solution and the nozzle tip orientation, a range of shapes from symmetric and near-spherical, to asymmetric and anisotropic (e.g., egg-, rice grain-, arc-, ring-, snail shell-, tear-, and tadpole-like) can be produced. We explain our observations using scaling analysis of the forces exerted on the droplet at different stages of particle production. We show that the main factors that determine the degree of droplet deformation during bath entry and the final appearance of the alginate particles are the initial shape of the droplets, the timescales of the viscoplastic fluid relaxation versus the crosslinking reaction, and the physico-chemical properties of the yield-stress material.


Asunto(s)
Alginatos , Hidrogeles , Alginatos/química , Hidrogeles/química , Iones
13.
Soft Matter ; 18(24): 4625-4637, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35699057

RESUMEN

Micelles immobilized in polymer materials are of emerging interest in drug delivery, water treatment and other applications. Immobilization removes the need for membrane-based separation to eliminate micelles from the medium, enabling facile extraction and delivery in diverse industries. This work lays out a coarse-grained molecular dynamics simulations framework for the rapid identification of surfactants for use in immobilized micelle systems. Micelles are immobilized by constraining one end of the constituent surfactants in space, mimicking what would occur in a copolymer system. We demonstrate that constraints affect how the micelles interact with small hydrophobic molecules, making it important to account for their effects in various drug-micelle and pollutant-micelle simulations. Our results show that in several systems there is stronger interaction between hydrophobic small molecules and micelles in immobilized systems compared to unconstrained systems. These strengthened interactions can have important implications for the design of new micelle-based extraction and delivery processes.


Asunto(s)
Micelas , Simulación de Dinámica Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros , Tensoactivos/química
15.
Pharm Res ; 39(2): 411-421, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35119593

RESUMEN

PURPOSE: Industrial implementation of continuous oral solid dosage form manufacturing has been impeded by the poor powder flow properties of many active pharmaceutical ingredients (APIs). Microfluidic droplet-based particle synthesis is an emerging particle engineering technique that enables the production of neat or composite microparticles with precise control over key attributes that affect powder flowability, such as particle size distribution, particle morphology, composition, and the API's polymorphic form. However, the powder properties of these microparticles have not been well-studied due to the limited mass throughputs of available platforms. In this work, we produce spherical API and API-composite microparticles at high mass throughputs, enabling characterization and comparison of the bulk powder flow properties of these materials and greater understanding of how particle-scale attributes correlate with powder rheology. METHODS: A multi-channel emulsification device and an extractive droplet-based method are harnessed to synthesize spherical API and API-excipient particles of artemether. As-received API and API crystallized in the absence of droplet confinement are used as control cases. Particle attributes are characterized for each material and correlated with a comprehensive series of powder rheology tests. RESULTS: The droplet-based processed artemether particles are observed to be more flowable, less cohesive, and less compressible than conventionally synthesized artemether powder. Co-processing the API with polycaprolactone to produce composite microparticles reduces the friction of the powder on stainless steel, a common equipment material. CONCLUSIONS: Droplet-based extractive solidification is an attractive particle engineering technique for improving powder processing and may aid in the implementation of continuous solid dosage form manufacturing.


Asunto(s)
Antimaláricos/química , Arteméter/química , Excipientes/química , Técnicas Analíticas Microfluídicas , Poliésteres/química , Cristalización , Composición de Medicamentos , Emulsiones , Fricción , Polvos , Reología
16.
Adv Healthc Mater ; 11(10): e2102332, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35029040

RESUMEN

Extracellular vesicle-derived microRNA (EV-miRNA) represent a promising cancer biomarker for disease diagnosis and monitoring. However, existing techniques to detect EV-miRNA rely on complex, bias-prone strategies, and preprocessing steps, making absolute quantification highly challenging. This work demonstrates the development and application of a method for quantitative and multiplex detection of EV-miRNA, via rolling circle amplification within encoded hydrogel particles. By a one-pot extracellular vesicle lysis and microRNA capture step, the bias and losses associated with standard RNA extraction techniques is avoided. The system offers a large dynamic range (3 orders of magnitude), ease of multiplexing, and a limit of detection down to 2.3 zmol (46 × 10-18 m), demonstrating its utility in clinical applications based on liquid biopsy tests. Furthermore, orthogonal measurements of EV concentrations coupled with the direct, absolute quantification of miRNA in biological samples results in quantitative measurements of miRNA copy numbers per volume sample, and per extracellular vesicle.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Biomarcadores de Tumor , Hidrogeles , Biopsia Líquida , MicroARNs/genética , Técnicas de Amplificación de Ácido Nucleico
17.
Adv Healthc Mater ; 11(8): e2102252, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936230

RESUMEN

Conventional formulation strategies for hydrophobic small-molecule drug products frequently include mechanical milling to decrease active pharmaceutical ingredient (API) crystal size and subsequent granulation processes to produce an easily handled powder. A hydrogel-templated anti-solvent crystallization method is presented for the facile fabrication of microparticles containing dispersed nanocrystals of poorly soluble API. Direct crystallization within a porous hydrogel particle template yields core-shell structures in which the hydrogel core containing API nanocrystals is encased by a crystalline API shell. The process of controllable loading (up to 64% w/w) is demonstrated, and tailored dissolution profiles are achieved by simply altering the template particle size. API release is well described by a shrinking core model. Overall, the approach is a simple, scalable and potentially generalizable method that enables novel means of independently controlling both API crystallization and excipient characteristics, offering a "designer" drug particle system.


Asunto(s)
Excipientes , Hidrogeles , Cristalización/métodos , Excipientes/química , Tamaño de la Partícula , Solubilidad , Solventes/química
18.
Lab Chip ; 21(18): 3532-3540, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34286713

RESUMEN

Brain spheroids are emerging as valuable in vitro models that are accelerating the pace of research in various diseases. For Alzheimer's disease (AD) research, these models are enhanced using genetically engineered human neural progenitor cells and novel cell culture methods. However, despite these advances, it remains challenging to study the progression of AD in vitro as well as the propagation of pathogenic amyloid-ß (Aß) and tau tangles between diseased and healthy neurons using the brain spheroids model. To address this need, we designed a microfluidic system of connected microwells for arranging two types of brain spheroids in complex patterns and enabling the formation of thick bundles of neurites between the brain spheroids and the accumulation of pathogenic Aß within the spheroids.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo/fisiología , Esferoides Celulares/fisiología , Proteínas tau , Péptidos beta-Amiloides , Encéfalo/citología , Humanos , Neuronas/metabolismo , Proteínas tau/metabolismo
19.
Adv Mater ; 33(29): e2008618, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34096099

RESUMEN

Oral drug products have become indispensable in modern medicine because of their exceptional patient compliance. However, poor bioavailability of ubiquitous low-water-soluble active pharmaceutical ingredients (APIs) and lack of efficient oral drug formulations remain as significant challenges. Nanocrystalline formulations are an attractive route to increase API solubility, but typically require abrasive mechanical milling and several processing steps to create an oral dosage form. Using the dual amphiphilic and thermoresponsive properties of methylcellulose (MC), a new thermogelling nanoemulsion and a facile thermal dripping method are developed for efficient formulation of composite particles with the MC matrix embedded with precisely controlled API nanocrystals. Moreover, a fast and tunable release performance is achieved with the combination of a fast-eroding MC matrix and fast-dissolving API nanocrystals. Using the versatile thermal processing approach, the thermogelling nanoemulsion is easily formulated into a wide variety of dosage forms (nanoparticle suspension, drug tablet, and oral thin film) in a manner that avoids nanomilling. Overall, the proposed thermogelling nanoemulsion platform not only broadens the applications of thermoresponsive nanoemulsions but also shows great promise for more efficient formulation of oral drug products with high quality and tunable fast release.


Asunto(s)
Metilcelulosa , Química Farmacéutica , Nanopartículas , Solubilidad
20.
Biomicrofluidics ; 15(2): 024111, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33912266

RESUMEN

Replica obtained from micromolds patterned by simple photolithography has features with uniform heights, and attainable microchannels are thus quasi-two-dimensional. Recent progress in three-dimensional (3D) printing has enabled facile desktop fabrication of molds to replicate microchannels with varying heights. We investigated the replica obtained from four common techniques of 3D printing-fused deposition modeling, selective laser sintering, photo-polymer inkjet printing (PJ), and stereolithography (SL)-for the suitability to form microchannels in terms of the surface roughness inherent to the mechanism of 3D printing. There have been limited quantitative studies that focused on the surface roughness of a 3D-printed mold with different methods of 3D printing. We discussed that the surface roughness of the molds affected (1) transparency of the replica and (2) delamination pressure of poly(dimethylsiloxane) replica bonded to flat glass substrates. Thereafter, we quantified the accuracy of replication from 3D-printed molds by comparing the dimensions of the replicated parts to the designed dimensions and tested the ability to fabricate closely spaced microchannels. This study suggested that molds printed by PJ and SL printers were suitable for replica molding to fabricate microchannels with varying heights. The insight from this study shall be useful to fabricate 3D microchannels with controlled 3D patterns of flows guided by the geometry of the microchannels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA