Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34841185

RESUMEN

BACKGROUND: Power tools are an integral part of orthopaedic surgery but have the capacity to cause iatrogenic injury. With this systematic review, we aimed to investigate the prevalence of iatrogenic injury due to the use of power tools in orthopaedic surgery and to discuss the current methods that can be used to reduce injury. METHODS: We performed a systematic review of English-language studies related to power tools and iatrogenic injuries using a keyword search in MEDLINE, Embase, PubMed, and Scopus databases. Exclusion criteria included injuries related to cast-saw use, temperature-induced damage, and complications not clearly related to power-tool use. RESULTS: A total of 3,694 abstracts were retrieved, and 88 studies were included in the final analysis. Few studies and individual case reports looked directly at the prevalence of injury due to power tools. These included 2 studies looking at the frequency of vascular injury during femoral fracture fixation (0.49% and 0.2%), 2 studies investigating the frequency of vertebral artery injury during spinal surgery (0.5% and 0.08%), and 4 studies investigating vascular injury during total joint arthroplasty (1 study involving 138 vascular injuries in 124 patients, 2 studies noting 0.13% and 0.1% incidence, and 1 questionnaire sent electronically to surgeons). There are multiple methods for preventing damage during power-tool use. These include the use of robotics and simulation, specific drill settings, and real-time feedback techniques such as spectroscopy and electromyography. CONCLUSIONS: Power tools have the potential to cause iatrogenic injury to surrounding structures during orthopaedic surgery. Fortunately, the published literature suggests that the frequency of iatrogenic injury using orthopaedic power tools is low. There are multiple technologies available to reduce damage using power tools. In high-risk operations, the use of advanced technologies to reduce the chance of iatrogenic injury should be considered. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.

2.
J Mech Behav Biomed Mater ; 123: 104784, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419887

RESUMEN

Functionally graded porous structures (FGPSs) are gaining interest in the biomedical sector, specifically for orthopaedic implants. In this study, the compressive behaviour of seven different FGPSs comprised of Face Centred Cubic (FCC) and the Octet truss unit cells (OCT) were analysed. The porosity of the structures were graded in different directions (radially, longitudinally, laterally and longitudinally & radially) by varying the strut diameters or by combining the two types of unit cells. The structures were manufactured by laser power bed fusion and compression tests were performed. Radially and laterally porous graded structures were found to outperform uniform porous structures with an increase in stiffness of 13.7% and 21.1% respectively. The experimental and finite element analysis (FEA) results were in good agreement with differences in elastic modulus of 9.4% and yield strength of 15.8%. A new FEA beam model is proposed in this study to analyse this type of structures with accurate results and the consequent reduction of computational time. The accuracy of the Kelvin-Voight model and the rule of mixtures for predicting the mechanical behaviour of different FGPSs was also investigated. The results demonstrate the adequacy of the analytical models specifically for hybrid structures and for structures with smooth diameter transitions.


Asunto(s)
Materiales Biocompatibles , Titanio , Rayos Láser , Porosidad , Polvos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...