Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 17(1): e1009111, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411856

RESUMEN

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.


Asunto(s)
Antivirales/metabolismo , Inmunidad Innata/inmunología , Interferón Tipo I/metabolismo , Proteínas/metabolismo , Infecciones por Rhabdoviridae/inmunología , Vías Secretoras , Vesiculovirus/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/virología , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Vesiculovirus/fisiología
2.
Mol Cell Biol ; 35(17): 3029-43, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26100021

RESUMEN

Induction of an antiviral innate immune response relies on pattern recognition receptors, including retinoic acid-inducible gene 1-like receptors (RLR), to detect invading pathogens, resulting in the activation of multiple latent transcription factors, including interferon regulatory factor 3 (IRF3). Upon sensing of viral RNA and DNA, IRF3 is phosphorylated and recruits coactivators to induce type I interferons (IFNs) and selected sets of IRF3-regulated IFN-stimulated genes (ISGs) such as those for ISG54 (Ifit2), ISG56 (Ifit1), and viperin (Rsad2). Here, we used wild-type, glycogen synthase kinase 3α knockout (GSK-3α(-/-)), GSK-3ß(-/-), and GSK-3α/ß double-knockout (DKO) embryonic stem (ES) cells, as well as GSK-3ß(-/-) mouse embryonic fibroblast cells in which GSK-3α was knocked down to demonstrate that both isoforms of GSK-3, GSK-3α and GSK-3ß, are required for this antiviral immune response. Moreover, the use of two selective small-molecule GSK-3 inhibitors (CHIR99021 and BIO-acetoxime) or ES cells reconstituted with the catalytically inactive versions of GSK-3 isoforms showed that GSK-3 activity is required for optimal induction of antiviral innate immunity. Mechanistically, GSK-3 isoform activation following Sendai virus infection results in phosphorylation of ß-catenin at S33/S37/T41, promoting IRF3 DNA binding and activation of IRF3-regulated ISGs. This study identifies the role of a GSK-3/ß-catenin axis in antiviral innate immunity.


Asunto(s)
Glucógeno Sintasa Quinasa 3/genética , Virus Sendai/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , beta Catenina/genética , Animales , Línea Celular Tumoral , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Células HeLa , Humanos , Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Receptores Inmunológicos , Infecciones por Respirovirus/inmunología , Infecciones por Rhabdoviridae/inmunología , beta Catenina/metabolismo
3.
J Innate Immun ; 6(5): 650-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24800889

RESUMEN

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are the main cytosolic sensors of single-stranded RNA viruses, including paramyxoviruses, and are required to initiate a quick and robust innate antiviral response. Despite different ligand-binding properties, the consensus view is that RIG-I and MDA5 trigger common signal(s) to activate interferon regulatory factor 3 (IRF-3) and NF-κB, and downstream antiviral and proinflammatory cytokine expression. Here, we performed a thorough analysis of the temporal involvement of RIG-I and MDA5 in the regulation of IRF-3 during respiratory syncytial virus (RSV) infection. Based on specific RNA interference-mediated knockdown of RIG-I and MDA5 in A549 cells, we confirmed that RIG-I is critical for the initiation of IRF-3 phosphorylation, dimerization and downstream gene expression. On the other hand, our experiments yielded the first evidence that knockdown of MDA5 leads to early ubiquitination and proteasomal degradation of active IRF-3. Conversely, ectopic expression of MDA5 prolonged RIG-I-induced IRF-3 activation. Altogether, we provide novel mechanistic insight into the temporal involvement of RIG-I and MDA5 in the innate antiviral response. While RIG-I is essential for initial IRF-3 activation, engagement of induced MDA5 is essential to prevent early degradation of IRF-3, thereby sustaining IRF-3-dependent antiviral gene expression. MDA5 plays a similar role during Sendai virus infection suggesting that this model is not restricted to RSV amongst paramyxoviruses.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Células Epiteliales/inmunología , Factor 3 Regulador del Interferón/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , Células Epiteliales/virología , Regulación de la Expresión Génica/genética , Humanos , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/genética , Helicasa Inducida por Interferón IFIH1 , Fosforilación/genética , Proteolisis , ARN Interferente Pequeño/genética , Receptores Inmunológicos , Transducción de Señal/genética , Ubiquitinación/genética
4.
Arterioscler Thromb Vasc Biol ; 33(12): 2850-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24135021

RESUMEN

OBJECTIVE: Angiotensin II (Ang II) is implicated in processes underlying the development of arterial wall remodeling events, including cellular hypertrophy and inflammation. We previously documented the activation of IκB kinase-ß (IKKß) in Ang II-treated cells, a kinase involved in inflammatory reactions. In light of a study suggesting a role of IKKß in angiogenesis through its effect on the tuberous sclerosis (TSC)1/2-mammalian target of rapamycin complex 1 pathway in cancer cells, we hypothesized that targeting IKKß could reduce arterial remodeling events by affecting both the inflammatory and the growth-promoting response of Ang II. APPROACH AND RESULTS: Treatment of aortic vascular smooth muscle cells with Ang II induced the rapid and sustained phosphorylation of TSC1 on Ser511, which paralleled the activation of effectors of the mammalian target of rapamycin complex 1 pathway. Furthermore, we show that Ser511 of TSC1 acted as a phosphoacceptor site for Ang II-activated IKKß. Consistent with this, the use of different short hairpin RNA constructs targeting IKKß reduced Ang II-induced TSC1, S6 kinase, and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation and the rate of protein synthesis. Overexpression of TSC1 lacking Ser511 in vascular smooth muscle cells also exerted detrimental effects on the hypertrophic effect of Ang II. Furthermore, the selective IKKß inhibitor N-(6-chloro-7-methoxy-9H-ß-carbolin-8-yl)-2 methylnicotinamide reduced the inflammatory response and dose-dependently diminished Ang II-induced TSC1 phosphorylation and effectors of the mammalian target of rapamycin complex 1 pathway, leading to inhibition of protein synthesis in vitro and in rat arteries in vivo. CONCLUSIONS: Our findings provide new insights into the molecular understanding of the pathological role of Ang II and assist in identifying the beneficial effects of IKKß inhibition for the treatment of cardiovascular diseases.


Asunto(s)
Angiotensina II/farmacología , Proliferación Celular/efectos de los fármacos , Quinasa I-kappa B/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Angiotensina II/administración & dosificación , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Hipertrofia , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Mediadores de Inflamación/metabolismo , Infusiones Subcutáneas , Péptidos y Proteínas de Señalización Intracelular , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Fosfoproteínas/metabolismo , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Transfección , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
PLoS Pathog ; 8(7): e1002747, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792062

RESUMEN

Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) is a central mediator important for inducing type I interferon (IFN) production in response to intracellular double-stranded RNA (dsRNA). Here, we report the identification of Sec16A and p115, two proteins of the ER-to-Golgi vesicular transport system, as novel components of the TRAF3 interactome network. Notably, in non-infected cells, TRAF3 was found associated with markers of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-Golgi apparatus. Upon dsRNA and dsDNA sensing however, the Golgi apparatus fragmented into cytoplasmic punctated structures containing TRAF3 allowing its colocalization and interaction with Mitochondrial AntiViral Signaling (MAVS), the essential mitochondria-bound RIG-I-like Helicase (RLH) adaptor. In contrast, retention of TRAF3 at the ER-to-Golgi vesicular transport system blunted the ability of TRAF3 to interact with MAVS upon viral infection and consequently decreased type I IFN response. Moreover, depletion of Sec16A and p115 led to a drastic disorganization of the Golgi paralleled by the relocalization of TRAF3, which under these conditions was unable to associate with MAVS. Consequently, upon dsRNA and dsDNA sensing, ablation of Sec16A and p115 was found to inhibit IRF3 activation and anti-viral gene expression. Reciprocally, mild overexpression of Sec16A or p115 in Hec1B cells increased the activation of IFNß, ISG56 and NF-κB -dependent promoters following viral infection and ectopic expression of MAVS and Tank-binding kinase-1 (TBK1). In line with these results, TRAF3 was found enriched in immunocomplexes composed of p115, Sec16A and TBK1 upon infection. Hence, we propose a model where dsDNA and dsRNA sensing induces the formation of membrane-bound compartments originating from the Golgi, which mediate the dynamic association of TRAF3 with MAVS leading to an optimal induction of innate immune responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Inmunidad Innata , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Línea Celular , ADN/metabolismo , Perfilación de la Expresión Génica , Proteínas de la Matriz de Golgi , Células HEK293 , Células HeLa , Humanos , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Interferón beta/genética , Mitocondrias/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteoma , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño , Proteínas de Unión al ARN , Transducción de Señal , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
J Biol Chem ; 285(40): 30708-18, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20659889

RESUMEN

Activation of NF-κB transcription factors by locally produced angiotensin II (Ang II) is proposed to be involved in chronic inflammatory reactions leading to atherosclerosis development. However, a clear understanding of the signaling cascades coupling the Ang II AT1 receptors to the activation of NF-κB transcription factors is still lacking. Using primary cultured aortic vascular smooth muscle cells, we show that activation of the IKK complex and NF-κB transcription factors by Ang II is regulated by phosphorylation of the catalytic subunit IKKß on serine residues 177 and 181 in the activation T-loop. The use of pharmacological inhibitors against conventional protein kinases C (PKCs), mitogen-activated/extracellular signal-regulated kinase (MEK) 1/2, ribosomal S6 kinase (RSK), and silencing RNA technology targeting PKCα, IKKß subunit, tumor growth factor ß-activating kinase-1 (TAK1), the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor-6 (TRAF6), and RSK isoforms, demonstrates the requirement of two distinct signaling pathway for the phosphorylation of IKKß and the activation of the IKK complex by Ang II. Rapid phosphorylation of IKKß requires a second messenger-dependent pathway composed of PKCα-TRAF6-TAK1, whereas sustained phosphorylation and activation of IKKß requires the MEK1/2-ERK1/2-RSK pathway. Importantly, simultaneously targeting components of these two pathways completely blunts the phosphorylation of IKKß and the proinflammatory effect of the octapeptide. This is the first report demonstrating activation of TAK1 by the AT1R. We propose a model whereby TRAF6-TAK1 and ERK-RSK intracellular pathways independently and sequentially converge to the T-loop phosphorylation for full activation of IKKß, which is an essential step in the proinflammatory activity of Ang II.


Asunto(s)
Quinasa I-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sistemas de Mensajero Secundario , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Línea Celular , Activación Enzimática/efectos de los fármacos , Humanos , Inflamación/metabolismo , Inflamación/patología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA