Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200581

RESUMEN

Although the sporadic form of Alzheimer's disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.

2.
Food Chem Toxicol ; 154: 112316, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34089800

RESUMEN

Mitochondria are among the first responders to various stress factors that challenge cell and tissue homeostasis. Various plant alkaloids have been investigated for their capacity to modulate mitochondrial activities. In this study, we used isolated mitochondria from mouse brain and liver tissues to assess nicotine, anatabine and anabasine, three alkaloids found in tobacco plant, for potential modulatory activity on mitochondrial bioenergetics parameters. All alkaloids decreased basal oxygen consumption of mouse brain mitochondria in a dose-dependent manner without any effect on the ADP-stimulated respiration. None of the alkaloids, at 1 nM or 1.25 µM concentrations, influenced the maximal rate of swelling of brain mitochondria. In contrast to brain mitochondria, 1.25 µM anatabine, anabasine and nicotine increased maximal rate of swelling of liver mitochondria suggesting a toxic effect. Only at 1 mM concentration, anatabine slowed down the maximal rate of Ca2+-induced swelling and increased the time needed to reach the maximal rate of swelling. The observed mitochondrial bioenergetic effects are probably mediated through a pathway independent of nicotinic acetylcholine receptors, as quantitative proteomic analysis could not confirm their expression in pure mitochondrial fractions isolated from mouse brain tissue.


Asunto(s)
Alcaloides/toxicidad , Mitocondrias/efectos de los fármacos , Plantas/química , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Proteómica , Receptores Nicotínicos/metabolismo
3.
FASEB J ; 35(6): e21586, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960016

RESUMEN

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Only 10% of all cases are familial form, the remaining 90% are sporadic form with unknown genetic background. The etiology of sporadic AD is still not fully understood. Pathogenesis and pathobiology of this disease are limited due to the limited number of experimental models. We used primary culture of fibroblasts derived from patients diagnosed with sporadic form of AD for investigation of dynamic properties of mitochondria, including fission-fusion process and localization of mitochondria within the cell. We observed differences in mitochondrial network organization with decreased mitochondrial transport velocity, and a drop in the frequency of fusion-fission events. These studies show how mitochondrial dynamics adapt to the conditions of long-term mitochondrial stress that prevails in cells of sporadic form of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Fibroblastos/patología , Mitocondrias/patología , Enfermedades Mitocondriales/complicaciones , Dinámicas Mitocondriales , Estrés Fisiológico , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Cell Physiol Biochem ; 54(2): 230-251, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32153152

RESUMEN

BACKGROUND/AIMS: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress. For this reason, we studied the morphology and dynamics of the mitochondrial network in human bronchial epithelial cells (BEAS-2B) exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). METHODS: Cells were subjected to short (1 week) and chronic (12 weeks) exposure to a low (7.5 µg/mL) concentration of 3R4F TPM and low (7.5 µg/mL), medium (37.5 µg/mL), and high (150 µg/mL) concentrations of TPM from THS 2.2. Confocal microscopy was applied to assess cellular and mitochondrial morphology. Cytosolic Ca2+ levels, mitochondrial membrane potential and mitochondrial mass were measured with appropriate fluorescent probes on laser scanning cytometer. The levels of proteins regulating mitochondrial dynamics and biogenesis were determined by Western blot. RESULTS: In BEAS-2B cells exposed for one week to the low concentration of 3R4F TPM and the high concentration of THS 2.2 TPM we observed clear changes in cell morphology, mitochondrial network fragmentation, altered levels of mitochondrial fusion and fission proteins and decreased biogenesis markers. Also cellular proliferation was slowed down. Upon chronic exposure (12 weeks) many parameters were affected in the opposite way comparing to short exposure. We observed strong increase of NRF2 protein level, reorganization of mitochondrial network and activation of the mitochondrial biogenesis process. CONCLUSION: Comparison of the effects of TPMs from 3R4F and from THS 2.2 revealed, that similar extent of alterations in mitochondrial dynamics and biogenesis is observed at 7.5 µg/mL of 3R4F TPM and 150 µg/mL of THS 2.2 TPM. 7 days exposure to the investigated components of cigarette smoke evoke mitochondrial stress, while upon chronic, 12 weeks exposure the hallmarks of cellular adaptation to the stressor were visible. The results also suggest that mitochondrial stress signaling is involved in the process of cellular adaptation under conditions of chronic stress caused by 3R4F and high concentration of THS 2.2.


Asunto(s)
Aerosoles/química , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Material Particulado/toxicidad , Calcio/metabolismo , Línea Celular , Colorantes Fluorescentes/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Material Particulado/química , Humo/efectos adversos , Factores de Tiempo , Productos de Tabaco/análisis
5.
J Bioenerg Biomembr ; 51(4): 259-276, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31197632

RESUMEN

Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.


Asunto(s)
Fumar Cigarrillos/metabolismo , Mitocondrias/metabolismo , Nicotina , Animales , Calcio/metabolismo , Fumar Cigarrillos/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Nicotina/efectos adversos , Nicotina/farmacocinética , Estrés Oxidativo/efectos de los fármacos
6.
Food Chem Toxicol ; 115: 1-12, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29448087

RESUMEN

Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 µg/mL of 3R4F TPM or 150 µg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.


Asunto(s)
Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nicotiana/efectos adversos , Material Particulado/efectos adversos , Productos de Tabaco/efectos adversos , Bronquios/citología , Bronquios/metabolismo , Línea Celular , Células Epiteliales/citología , Humanos , Exposición por Inhalación , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Humo/efectos adversos , Humo/análisis
7.
Postepy Biochem ; 62(2): 182-188, 2016.
Artículo en Polaco | MEDLINE | ID: mdl-28132470

RESUMEN

Mitochondria are multifunctional, dynamic organelles, which are continuously undergoing fusion and fission and are actively distributed within the cell. Mitochondria travel along microtubules together with a mitochondrial trafficking complex, formed by motor and adaptor proteins. Proper mitochondrial movements are crucial for neurons, in which mitochondria translocate in two directions. Anterograde transport is an outward movement of mitochondria from the cell body to the synapse, whereas retrograde is an inward movement away from the synapse or plasma membrane toward the cell body. This article presents a summary of current knowledge about the intracellular transport of mitochondria and its regulation in mammalian cells.


Asunto(s)
Microtúbulos/metabolismo , Mitocondrias/metabolismo , Animales , Transporte Biológico , Humanos , Mitocondrias/fisiología
8.
Front Microbiol ; 6: 1065, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500620

RESUMEN

Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation - periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a ß-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...