Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 221(Pt 22)2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30266788

RESUMEN

Directed and meaningful animal behavior depends on the ability to sense key features in the environment. Among the different environmental signals, olfactory cues are critically important for foraging, navigation and social communication in many species, including ants. Ants use their two antennae to explore the olfactory world, but how they do so remains largely unknown. In this study, we used high-resolution videography to characterize the antennae dynamics of carpenter ants (Camponotus pennsylvanicus). Antennae are highly active during both odor tracking and exploratory behavior. When tracking, ants used several distinct behavioral strategies with stereotyped antennae sampling patterns (which we call 'sinusoidal', 'probing' and 'trail following'). In all behaviors, left and right antennae movements were anti-correlated, and tracking ants exhibited biases in the use of left versus right antenna to sample the odor trail. These results suggest non-redundant roles for the two antennae. In one of the behavioral modules (trail following), ants used both antennae to detect trail edges and direct subsequent turns, suggesting a specialized form of tropotaxis. Lastly, removal of an antenna resulted not only in less accurate tracking but also in changes in the sampling pattern of the remaining antenna. Our quantitative characterization of odor trail tracking lays a foundation to build better models of olfactory sensory processing and sensorimotor behavior in terrestrial insects.


Asunto(s)
Hormigas/fisiología , Conducta Animal , Animales , Antenas de Artrópodos/fisiología , Señales (Psicología) , Feromonas , Olfato/fisiología , Grabación en Video
2.
Nat Methods ; 12(6): 547-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915122

RESUMEN

We describe a method to map the location of axonal arbors of many individual neurons simultaneously via the spectral properties of retrogradely transported dye-labeled vesicles. We inject overlapping regions of an axon target area with three or more different colored retrograde tracers. On the basis of the combinations and intensities of the colors in the individual vesicles transported to neuronal somata, we calculate the projection sites of each neuron's axon. This neuronal positioning system (NPS) enables mapping of many axons in a simple automated way. In our experiments, NPS combined with spectral (Brainbow) labeling of the input to autonomic ganglion cells showed that the locations of ganglion cell projections to a mouse salivary gland related to the identities of their preganglionic axonal innervation. NPS could also delineate projections of many axons simultaneously in the mouse central nervous system.


Asunto(s)
Axones , Corteza Cerebral/citología , Ganglios Parasimpáticos/citología , Neuronas/citología , Coloración y Etiquetado/métodos , Tálamo/citología , Animales , Mapeo Encefálico/métodos , Gráficos por Computador , Procesamiento de Imagen Asistido por Computador , Ratones , Vías Nerviosas/fisiología
3.
Curr Biol ; 23(1): 21-31, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23177476

RESUMEN

BACKGROUND: The cleavage-stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, because preimplantation genetic diagnosis requires removal of blastomeres from the early human embryo. To determine whether blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, noninvasive combinatorial fluorescent labeling method for embryonic lineage tracing. RESULTS: When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into postimplantation stages and therefore has relevance for subsequent development. CONCLUSIONS: The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues.


Asunto(s)
Blastómeros/citología , Desarrollo Embrionario , Animales , Blastómeros/fisiología , Linaje de la Célula , Femenino , Proteínas Luminiscentes/análisis , Masculino , Ratones , Ratones Transgénicos , Recombinación Genética , Proteína Fluorescente Roja
4.
Neuron ; 63(1): 6-8, 2009 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-19607787

RESUMEN

In mammals, climbing fiber axons compete for sole innervation at each Purkinje cell. At the same time, synapses disappear from Purkinje somata and appear in great numbers on the dendrites. In this issue of Neuron, Hashimoto et al. show that, by the time climbing fibers ascend the dendrites, the winner and losers are already decided.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Dendritas/fisiología , Fibras Nerviosas/fisiología , Células de Purkinje/citología , Animales , Células de Purkinje/fisiología , Sinapsis
5.
Nature ; 450(7166): 56-62, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17972876

RESUMEN

Detailed analysis of neuronal network architecture requires the development of new methods. Here we present strategies to visualize synaptic circuits by genetically labelling neurons with multiple, distinct colours. In Brainbow transgenes, Cre/lox recombination is used to create a stochastic choice of expression between three or more fluorescent proteins (XFPs). Integration of tandem Brainbow copies in transgenic mice yielded combinatorial XFP expression, and thus many colours, thereby providing a way to distinguish adjacent neurons and visualize other cellular interactions. As a demonstration, we reconstructed hundreds of neighbouring axons and multiple synaptic contacts in one small volume of a cerebellar lobe exhibiting approximately 90 colours. The expression in some lines also allowed us to map glial territories and follow glial cells and neurons over time in vivo. The ability of the Brainbow system to label uniquely many individual cells within a population may facilitate the analysis of neuronal circuitry on a large scale.


Asunto(s)
Expresión Génica , Ingeniería Genética/métodos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sistema Nervioso/metabolismo , Transgenes/genética , Animales , Sitios de Ligazón Microbiológica/genética , Axones/fisiología , Comunicación Celular , Línea Celular , Cerebelo/citología , Cerebelo/metabolismo , Color , Humanos , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Sistema Nervioso/citología , Vías Nerviosas , Neuroglía/citología , Neuroglía/metabolismo , Recombinación Genética/genética , Procesos Estocásticos , Sinapsis/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...