Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 95(22): e0091221, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34431698

RESUMEN

Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas de Neoplasias/inmunología , Proteínas de la Nucleocápside/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Animales , Línea Celular , Cricetinae , Humanos , Inmunidad Innata , Ratones , Ratones Noqueados , Replicación Viral
2.
Front Immunol ; 12: 683902, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163482

RESUMEN

Respiratory syncytial virus (RSV) is a public health concern that causes acute lower respiratory tract infection. So far, no vaccine candidate under development has reached the market and the only licensed product to prevent RSV infection in at-risk infants and young children is a monoclonal antibody (Synagis®). Polyclonal human anti-RSV hyper-immune immunoglobulins (Igs) have also been used but were superseded by Synagis® owing to their low titer and large infused volume. Here we report a new drug class of immunoglobulins, derived from human non hyper-immune plasma that was generated by an innovative bioprocess, called Ig cracking, combining expertises in plasma-derived products and affinity chromatography. By using the RSV fusion protein (F protein) as ligand, the Ig cracking process provided a purified and concentrated product, designated hyper-enriched anti-RSV IgG, composed of at least 15-20% target-specific-antibodies from normal plasma. These anti-RSV Ig displayed a strong in vitro neutralization effect on RSV replication. Moreover, we described a novel prophylactic strategy based on local nasal administration of this unique hyper-enriched anti-RSV IgG solution using a mouse model of infection with bioluminescent RSV. Our results demonstrated that very low doses of hyper-enriched anti-RSV IgG can be administered locally to ensure rapid and efficient inhibition of virus infection. Thus, the general hyper-enriched Ig concept appeared a promising approach and might provide solutions to prevent and treat other infectious diseases. IMPORTANCE: Respiratory Syncytial Virus (RSV) is the major cause of acute lower respiratory infections in children, and is also recognized as a cause of morbidity in the elderly. There are still no vaccines and no efficient antiviral therapy against this virus. Here, we described an approach of passive immunization with a new class of hyper-enriched anti-RSV immunoglobulins (Ig) manufactured from human normal plasma. This new class of immunoglobulin plasma derived product is generated by an innovative bioprocess, called Ig cracking, which requires a combination of expertise in both plasma derived products and affinity chromatography. The strong efficacy in a small volume of these hyper-enriched anti-RSV IgG to inhibit the viral infection was demonstrated using a mouse model. This new class of immunoglobulin plasma-derived products could be applied to other pathogens to address specific therapeutic needs in the field of infectious diseases or even pandemics, such as COVID-19.


Asunto(s)
Anticuerpos Antivirales/administración & dosificación , Inmunización Pasiva , Inmunoglobulina G/administración & dosificación , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/inmunología , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Pulmón/efectos de los fármacos , Pulmón/virología , Pruebas de Neutralización , Infecciones por Virus Sincitial Respiratorio/virología , Cornetes Nasales/efectos de los fármacos , Cornetes Nasales/virología , Proteínas Virales de Fusión/inmunología , Replicación Viral/efectos de los fármacos
3.
Mucosal Immunol ; 14(4): 949-962, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33846534

RESUMEN

Respiratory Syncytial Virus (RSV) is the major cause of lower respiratory tract infection in infants, in whom, the sensing of RSV by innate immune receptors and its regulation are still poorly described. However, the severe bronchiolitis following RSV infection in neonates has been associated with a defect in type I interferons (IFN-I) production, a cytokine produced mainly by alveolar macrophages (AMs) upon RSV infection in adults. In the present study, neonatal C57BL/6 AMs mobilized very weakly the IFN-I pathway upon RSV infection in vitro and failed to restrain virus replication. However, IFN-I productions by neonatal AMs were substantially increased by the deletion of Insulin-Responsive AminoPeptidase (IRAP), a protein previously involved in the regulation of IFN-I production by dendritic cells. Moreover, neonatal IRAPKO AMs showed a higher expression of IFN-stimulated genes than their wild-type C57BL/6 counterpart. Interestingly, depletion of IRAP did not affect adult AM responses. Finally, we demonstrated that newborn IRAPKO mice infected with RSV had more IFN-I in their lungs and eliminated the virus more efficiently than WT neonates. Taken together, early-life susceptibility to RSV infection may be related to an original age-dependent suppressive function of IRAP on the IFN-I driven-antiviral responses in neonatal AMs.


Asunto(s)
Cistinil Aminopeptidasa/metabolismo , Interferón Tipo I/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Virus Sincitial Respiratorio/virología , Transducción de Señal , Receptores Toll-Like/metabolismo , Replicación Viral
4.
FASEB J ; 35(4): e21348, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33715218

RESUMEN

The gut microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the gut and/or lung microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota in general can modulate the reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific-pathogen-free (SPF) and germ-free (GF) mice. Thus, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice after intranasal instillation to lipopolysaccharide (LPS), a component of Gram-negative bacteria. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to the environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Lipopolisacáridos/toxicidad , Pulmón/inmunología , Pulmón/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Enfermedades Pulmonares/inducido químicamente , Masculino , Ratones , Organismos Libres de Patógenos Específicos , Técnicas de Cultivo de Tejidos , Receptor Toll-Like 4/genética
5.
Front Mol Biosci ; 7: 583556, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195428

RESUMEN

Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.

6.
Viruses ; 12(8)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751234

RESUMEN

Respiratory syncytial virus (RSV) is the prevalent pathogen of lower respiratory tract infections in children. The presence of neonatal regulatory B lymphocytes (nBreg) has been associated with a poor control of RSV infection in human newborns and with bronchiolitis severity. So far, little is known about how nBreg may contribute to neonatal immunopathology to RSV. We tracked nBreg in neonatal BALB/c mice and we investigated their impact on lung innate immunity, especially their crosstalk with alveolar macrophages (AMs) upon RSV infection. We showed that the colonization by nBreg during the first week of life is a hallmark of neonatal lung whereas this population is almost absent in adult lung. This particular period of age when nBreg are abundant corresponds to the same period when RSV replication in lungs fails to generate a type-I interferons (IFN-I) response and is not contained. When neonatal AMs are exposed to RSV in vitro, they produce IFN-I that in turn enhances IL-10 production by nBreg. IL-10 reciprocally can decrease IFN-I secretion by AMs. Thus, our work identified nBreg as an important component of neonatal lungs and pointed out new immunoregulatory interactions with AMs in the context of RSV infection.


Asunto(s)
Linfocitos B Reguladores/inmunología , Interleucina-10/inmunología , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Cornetes Nasales/inmunología , Animales , Animales Recién Nacidos , Subgrupos de Linfocitos B/inmunología , Células Cultivadas , Inmunidad Innata , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Interleucina-10/metabolismo , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/fisiología , Bazo/inmunología , Replicación Viral
7.
J Immunol Res ; 2017: 8734504, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250560

RESUMEN

Human respiratory syncytial virus (RSV) is a common and highly contagious viral agent responsible for acute lower respiratory infection in infants. This pathology characterized by mucus hypersecretion and a disturbed T cell immune response is one of the major causes of infant hospitalization for severe bronchiolitis. Although different risk factors are associated with acute RSV bronchiolitis, the immunological factors contributing to the susceptibility of RSV infection in infants are not clearly elucidated. Epidemiological studies have established that the age at initial infection plays a central role in the severity of the disease. Thus, neonatal susceptibility is intrinsically linked to the immunological characteristics of the young pulmonary mucosa. Early life is a critical period for the lung development with the first expositions to external environmental stimuli and microbiota colonization. Furthermore, neonates display a lung immune system that profoundly differs to those from adults, with the predominance of type 2 immune cells. In this review, we discuss the latest information about the lung immune environment in the early period of life at a steady state and upon RSV infection and how we can modulate neonatal susceptibility to RSV infection.


Asunto(s)
Pulmón/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/fisiología , Microambiente Celular , Susceptibilidad a Enfermedades , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Inmunomodulación , Recién Nacido , Pulmón/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...