Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36867371

RESUMEN

BACKGROUND: Ablation of autonomic ectopy-triggering ganglionated plexuses (ET-GP) has been used to treat paroxysmal atrial fibrillation (AF). It is not known if ET-GP localisation is reproducible between different stimulators or whether ET-GP can be mapped and ablated in persistent AF. We tested the reproducibility of the left atrial ET-GP location using different high-frequency high-output stimulators in AF. In addition, we tested the feasibility of identifying ET-GP locations in persistent atrial fibrillation. METHODS: Nine patients undergoing clinically-indicated paroxysmal AF ablation received pacing-synchronised high-frequency stimulation (HFS), delivered in SR during the left atrial refractory period, to compare ET-GP localisation between a custom-built current-controlled stimulator (Tau20) and a voltage-controlled stimulator (Grass S88, SIU5). Two patients with persistent AF underwent cardioversion, left atrial ET-GP mapping with the Tau20 and ablation (Precision™, Tacticath™ [n = 1] or Carto™, SmartTouch™ [n = 1]). Pulmonary vein isolation (PVI) was not performed. Efficacy of ablation at ET-GP sites alone without PVI was assessed at 1 year. RESULTS: The mean output to identify ET-GP was 34 mA (n = 5). Reproducibility of response to synchronised HFS was 100% (Tau20 vs Grass S88; [n = 16] [kappa = 1, SE = 0.00, 95% CI 1 to 1)][Tau20 v Tau20; [n = 13] [kappa = 1, SE = 0, 95% CI 1 to 1]). Two patients with persistent AF had 10 and 7 ET-GP sites identified requiring 6 and 3 min of radiofrequency ablation respectively to abolish ET-GP response. Both patients were free from AF for > 365 days without anti-arrhythmics. CONCLUSIONS: ET-GP sites are identified at the same location by different stimulators. ET-GP ablation alone was able to prevent AF recurrence in persistent AF, and further studies would be warranted.

2.
Muscle Nerve ; 66(5): 625-630, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054838

RESUMEN

INTRODUCTION/AIMS: Fasciculations are an early clinical hallmark of amyotrophic lateral sclerosis (ALS), amenable to detection by high-density surface electromyography (HDSEMG). In conjunction with the Surface Potential Quantification Engine (SPiQE), HDSEMG offers improved spatial resolution for the analysis of fasciculations. This study aims to establish an optimal recording duration to enable longitudinal remote monitoring in the home. METHODS: Twenty patients with ALS and five patients with benign fasciculation syndrome (BFS) underwent serial 30 min HDSEMG recordings from biceps brachii and gastrocnemii. SPiQE was independently applied to abbreviated epochs within each 30-min recording (0-5, 0-10, 0-15, 0-20, and 0-25 min), outputting fasciculation frequency, amplitude median and amplitude interquartile range. Bland-Altman plots and intraclass correlation coefficients (ICC) were used to assess agreement with the validated 30-min recording. RESULTS: In total, 506 full recordings were included. The 5 min recordings demonstrated diverse and relatively poor agreement with the 30 min baselines across all parameters, muscles and patient groups (ICC = 0.32-0.86). The 15-min recordings provided more acceptable and stable agreement (ICC = 0.78-0.98), which did not substantially improve in longer recordings. DISCUSSION: For the detection and quantification of fasciculations in patients with ALS and BFS, HDSEMG recordings can be halved from 30 to 15 min without significantly compromising the primary outputs. Reliance on a shorter recording duration should lead to improved tolerability and repeatability among patients, facilitating longitudinal remote monitoring in patients' homes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Fasciculación , Humanos , Fasciculación/diagnóstico , Electromiografía , Esclerosis Amiotrófica Lateral/diagnóstico , Músculo Esquelético/fisiología , Síndrome
3.
J Physiol ; 599(17): 4117-4130, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34261189

RESUMEN

KEY POINTS: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder of motor neurons, carrying a short survival. High-density motor unit recordings permit analysis of motor unit size (amplitude) and firing behaviour (afterhyperpolarization duration and muscle fibre conduction velocity). Serial recordings from biceps brachii indicated that motor units fired faster and with greater amplitude as disease progressed. First-recruited motor units in the latter stages of ALS developed characteristics akin to fast-twitch motor units, possibly as a compensatory mechanism for the selective loss of this motor unit subset. This process may become maladaptive, highlighting a novel therapeutic target to reduce motor unit vulnerability. ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with a median survival of 3 years. We employed serial high-density surface electromyography (HDSEMG) to characterize voluntary and ectopic patterns of motor unit (MU) firing at different stages of disease. By distinguishing MU subtypes with variable vulnerability to disease, we aimed to evaluate compensatory neuronal adaptations that accompany disease progression. Twenty patients with ALS and five patients with benign fasciculation syndrome (BFS) underwent 1-7 assessments each. HDSEMG measurements comprised 30 min of resting muscle and 1 min of light voluntary activity from biceps brachii bilaterally. MU decomposition was performed by the progressive FastICA peel-off technique. Inter-spike interval, firing pattern, MU potential area, afterhyperpolarization duration and muscle fibre conduction velocity were determined. In total, 373 MUs (ALS = 287; BFS = 86) were identified from 182 recordings. Weak ALS muscles demonstrated a lower mean inter-spike interval (82.7 ms) than strong ALS muscles (96.0 ms; P = 0.00919) and BFS muscles (95.3 ms; P = 0.0039). Mean MU potential area (area under the curve: 487.5 vs. 98.7 µV ms; P < 0.0001) and muscle fibre conduction velocity (6.2 vs. 5.1 m/s; P = 0.0292) were greater in weak ALS muscles than in BFS muscles. Purely fasciculating MUs had a greater mean MU potential area than MUs also under voluntary command (area under the curve: 679.6 vs. 232.4 µV ms; P = 0.00144). These results suggest that first-recruited MUs develop a faster phenotype in the latter stages of ALS, likely driven by the preferential loss of vulnerable fast-twitch MUs. Inhibition of this potentially maladaptive phenotypic drift may protect the longevity of the MU pool, stimulating a novel therapeutic avenue.


Asunto(s)
Esclerosis Amiotrófica Lateral , Electromiografía , Fasciculación , Humanos , Neuronas Motoras , Músculo Esquelético , Fenotipo
4.
Muscle Nerve ; 63(3): 392-396, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290574

RESUMEN

INTRODUCTION: Prognostic uncertainty in amyotrophic lateral sclerosis (ALS) confounds clinical management planning, patient counseling, and trial stratification. Fasciculations are an early clinical hallmark of disease and can be quantified noninvasively. Using an innovative analytical method, we correlated novel fasciculation parameters with a predictive survival model. METHODS: Using high-density surface electromyography, we collected biceps recordings from ALS patients on their first research visit. By accessing an online survival prediction tool, we provided eight clinical and genetic parameters to estimate individual patient survival. Fasciculation analysis was performed using an automated algorithm (Surface Potential Quantification Engine), with a Cox proportional hazards model to calculate hazard ratios. RESULTS: The median predicted survival for 31 patients was 41 (interquartile range, 31.5-57) months. Univariate hazard ratios were 1.09 (95% confidence interval [CI], 1.03-1.16) for the rate of change of fasciculation frequency (RoCoFF) and 1.10 (95% CI, 1.01-1.19) for the amplitude dispersion rate. Only the RoCoFF remained significant (P = .04) in a multivariate model. DISCUSSION: Noninvasive measurement of fasciculations at a single time-point could enhance prognostic models in ALS, where higher RoCoFF values indicate shorter survival.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Fasciculación/fisiopatología , Músculo Esquelético/fisiopatología , Anciano , Brazo , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Tasa de Supervivencia
5.
Brain Commun ; 2(1): fcaa018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32901231

RESUMEN

Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a median survival of 3 years from symptom onset. Accessible and reliable biomarkers of motor neuron decline are urgently needed to quicken the pace of drug discovery. Fasciculations represent an early pathophysiological hallmark of amyotrophic lateral sclerosis and can be reliably detected by high-density surface electromyography. We set out to quantify fasciculation potentials prospectively over 14 months, seeking comparisons with established markers of disease progression. Twenty patients with amyotrophic lateral sclerosis and five patients with benign fasciculation syndrome underwent up to seven assessments each. At each assessment, we performed the amyotrophic lateral sclerosis-functional rating scale, sum power score, slow vital capacity, 30-min high-density surface electromyography recordings from biceps and gastrocnemius and the motor unit number index. We employed the Surface Potential Quantification Engine, which is an automated analytical tool to detect and characterize fasciculations. Linear mixed-effect models were employed to account for the pseudoreplication of serial measurements. The amyotrophic lateral sclerosis-functional rating scale declined by 0.65 points per month (P < 0.0001), 35% slower than average. A total of 526 recordings were analysed. Compared with benign fasciculation syndrome, biceps fasciculation frequency in amyotrophic lateral sclerosis was 10 times greater in strong muscles and 40 times greater in weak muscles. This was coupled with a decline in fasciculation frequency among weak muscles of -7.6/min per month (P = 0.003), demonstrating the rise and fall of fasciculation frequency in biceps muscles. Gastrocnemius behaved differently, whereby strong muscles in amyotrophic lateral sclerosis had fasciculation frequencies five times greater than patients with benign fasciculation syndrome while weak muscles were increased by only 1.5 times. Gastrocnemius demonstrated a significant decline in fasciculation frequency in strong muscles (2.4/min per month, P < 0.0001), which levelled off in weak muscles. Fasciculation amplitude, an easily quantifiable surrogate of the reinnervation process, was highest in the biceps muscles that transitioned from strong to weak during the study. Pooled analysis of >900 000 fasciculations revealed inter-fasciculation intervals <100 ms in the biceps of patients with amyotrophic lateral sclerosis, particularly in strong muscles, consistent with the occurrence of doublets. We hereby present the most comprehensive longitudinal quantification of fasciculation parameters in amyotrophic lateral sclerosis, proposing a unifying model of the interactions between motor unit loss, muscle power and fasciculation frequency. The latter showed promise as a disease biomarker with linear rates of decline in strong gastrocnemius and weak biceps muscles, reflecting the motor unit loss that drives clinical progression.

6.
J Neuroeng Rehabil ; 17(1): 114, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825829

RESUMEN

BACKGROUND: Traumatic Brain Injury (TBI) is a leading cause of fatality and disability worldwide, partly due to the occurrence of secondary injury and late interventions. Correct diagnosis and timely monitoring ensure effective medical intervention aimed at improving clinical outcome. However, due to the limitations in size and cost of current ambulatory bioinstruments, they cannot be used to monitor patients who may still be at risk of secondary injury outside the ICU. METHODS: We propose a complete system consisting of a wearable wireless bioinstrument and a cloud-based application for real-time TBI monitoring. The bioinstrument can simultaneously record up to ten channels including both ECoG biopotential and neurochemicals (e.g. potassium, glucose and lactate), and supports various electrochemical methods including potentiometry, amperometry and cyclic voltammetry. All channels support variable gain programming to automatically tune the input dynamic range and address biosensors' falling sensitivity. The instrument is flexible and can be folded to occupy a small space behind the ear. A Bluetooth Low-Energy (BLE) receiver is used to wirelessly connect the instrument to a cloud application where the recorded data is stored, processed and visualised in real-time. Bench testing has been used to validate device performance. RESULTS: The instrument successfully monitored spreading depolarisations (SDs) - reproduced using a signal generator - with an SNR of 29.07 dB and NF of 0.26 dB. The potentiostat generates a wide voltage range from -1.65V to +1.65V with a resolution of 0.8mV and the sensitivity of the amperometric AFE was verified by recording 5 pA currents. Different potassium, glucose and lactate concentrations prepared in lab were accurately measured and their respective working curves were constructed. Finally,the instrument achieved a maximum sampling rate of 1.25 ksps/channel with a throughput of 105 kbps. All measurements were successfully received at the cloud. CONCLUSION: The proposed instrument uniquely positions itself by presenting an aggressive optimisation of size and cost while maintaining high measurement accuracy. The system can effectively extend neuroelectrochemical monitoring to all TBI patients including those who are mobile and those who are outside the ICU. Finally, data recorded in the cloud application could be used to help diagnosis and guide rehabilitation.


Asunto(s)
Técnicas Biosensibles/instrumentación , Lesiones Traumáticas del Encéfalo , Electrocorticografía/instrumentación , Monitoreo Ambulatorio/instrumentación , Monitorización Neurofisiológica/instrumentación , Química Encefálica , Humanos , Masculino
7.
Muscle Nerve ; 61(6): 745-750, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32208527

RESUMEN

INTRODUCTION: Fasciculations represent early neuronal hyperexcitability in amyotrophic lateral sclerosis (ALS). To aid calibration as a disease biomarker, we set out to characterize the daytime variability of fasciculation firing. METHODS: Fasciculation awareness scores were compiled from 19 ALS patients. In addition, 10 ALS patients prospectively underwent high-density surface electromyographic (HDSEMG) recordings from biceps and gastrocnemius at three time-points during a single day. RESULTS: Daytime fasciculation awareness scores were low (mean: 0.28 muscle groups), demonstrating significant variability (coefficient of variation: 303%). Biceps HDSEMG recordings were highly consistent for fasciculation potential frequency (intraclass correlation coefficient [ICC] = 95%, n = 19) and the interquartile range of fasciculation potential amplitude (ICC = 95%, n = 19). These parameters exhibited robustness to observed fluctuations in data quality parameters. Gastrocnemius demonstrated more modest levels of consistency overall (44% to 62%, n = 20). DISCUSSION: There was remarkable daytime consistency of fasciculation firing in the biceps of ALS patients, despite sparse and intermittent awareness among patients' accounts.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Fasciculación/diagnóstico , Fasciculación/fisiopatología , Músculo Esquelético/fisiopatología , Anciano , Anciano de 80 o más Años , Electromiografía/tendencias , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Autoinforme , Factores de Tiempo
9.
Brain Commun ; 2(2): fcaa141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33543131

RESUMEN

Delayed diagnosis of amyotrophic lateral sclerosis prevents early entry into clinical trials at a time when neuroprotective therapies would be most effective. Fasciculations are an early hallmark of amyotrophic lateral sclerosis, preceding muscle weakness and atrophy. To assess the potential diagnostic utility of fasciculations measured by high-density surface electromyography, we carried out 30-min biceps brachii recordings in 39 patients with amyotrophic lateral sclerosis, 7 patients with benign fasciculation syndrome, 1 patient with multifocal motor neuropathy and 17 healthy individuals. We employed the surface potential quantification engine to compute fasciculation frequency, fasciculation amplitude and inter-fasciculation interval. Inter-group comparison was assessed by Welch's analysis of variance. Logistic regression, receiver operating characteristic curves and decision trees discerned the diagnostic performance of these measures. Fasciculation frequency, median fasciculation amplitude and proportion of inter-fasciculation intervals <100 ms showed significant differences between the groups. In the best-fit regression model, increasing fasciculation frequency and median fasciculation amplitude were independently associated with the diagnosis of amyotrophic lateral sclerosis. Fasciculation frequency was the single best measure predictive of the disease, with an area under the curve of 0.89 (95% confidence interval 0.81-0.98). The cut-off of more than 14 fasciculation potentials per minute achieved 80% sensitivity (95% confidence interval 63-90%) and 96% specificity (95% confidence interval 78-100%). In conclusion, non-invasive measurement of fasciculation frequency at a single time-point reliably distinguished amyotrophic lateral sclerosis from its mimicking conditions and healthy individuals, warranting further research into its diagnostic applications.

10.
J Neuroeng Rehabil ; 16(1): 156, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823804

RESUMEN

BACKGROUND: It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. METHODS: To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. RESULTS: To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. CONCLUSIONS: The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5-500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments.


Asunto(s)
Electrodiagnóstico/instrumentación , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica/instrumentación , Animales , Estimulación Encefálica Profunda , Diseño de Equipo , Humanos , Procesamiento de Señales Asistido por Computador
11.
J Neural Eng ; 16(6): 066003, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31151118

RESUMEN

OBJECTIVE: Recording of local field potentials (LFPs) during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, existing recording systems lack the ability to provide artefact-free high-frequency (>100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. APPROACH: To solve this problem, we designed and developed a novel, low-noise and versatile analog front-end (AFE) that uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, we assessed the performance of the realised AFE by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). A full performance comparison between the proposed AFE and an identical AFE, equipped with an 8th order analog Bessel notch filter, was also conducted. MAIN RESULTS: A high-performance, 4 nV ([Formula: see text])-1 AFE that is capable of recording nV-scale signals was designed in accordance with the imposed specifications. Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5-250 Hz) during stimulation. Its sensing and stimulation artefact suppression capabilities outperformed the capabilities of the AFE equipped with the Bessel notch filter. SIGNIFICANCE: The designed AFE can precisely record LFP signals, in and without the presence of either unipolar or bipolar DBS, which renders it as a functional and practical AFE architecture to be utilised in a wide range of applications and environments. This work paves the way for the development of externalized research tools for closed-loop neuromodulation that use low- and higher-frequency LFPs as control signals.


Asunto(s)
Artefactos , Ganglios Basales/fisiología , Ondas Encefálicas/fisiología , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/normas , Humanos
12.
Sci Rep ; 8(1): 14695, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279418

RESUMEN

Currently, there are no valid pre-operatively established biomarkers or algorithms that can accurately predict surgical and clinical outcome for patients with advanced epithelial ovarian cancer (EOC). In this study, we suggest that profiling of tumour parameters such as bioelectrical-potential and metabolites, detectable by electronic sensors, could facilitate the future development of devices to better monitor disease and predict surgical and treatment outcomes. Biopotential was recorded, using a potentiometric measurement system, in ex vivo paired non-cancerous and cancerous omental tissues from advanced stage EOC (n = 36), and lysates collected for metabolite measurement by microdialysis. Consistently different biopotential values were detected in cancerous tissue versus non-cancerous tissue across all cases (p < 0.001). High tumour biopotential levels correlated with advanced tumour stage (p = 0.048) and tumour load, and negatively correlated with stroma. Within our EOC cohort and specifically the high-grade serous subtype, low biopotential levels associated with poorer progression-free survival (p = 0.0179, p = 0.0143 respectively). Changes in biopotential levels significantly correlated with common apoptosis related pathways. Lactate and glucose levels measured in paired tissues showed significantly higher lactate/glucose ratio in tissues with low biopotential (p < 0.01, n = 12). Our study proposes the feasibility of biopotential and metabolite monitoring as a biomarker modality profiling EOC to predict surgical and clinical outcomes.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma Epitelial de Ovario/mortalidad , Impedancia Eléctrica , Epiplón/química , Neoplasias Ováricas/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Técnicas Biosensibles , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/cirugía , Procedimientos Quirúrgicos de Citorreducción , Progresión de la Enfermedad , Electrodos , Femenino , Humanos , Estimación de Kaplan-Meier , Microdiálisis , Microfluídica , Persona de Mediana Edad , Epiplón/patología , Epiplón/cirugía , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Pronóstico , Supervivencia sin Progresión
13.
IEEE Trans Biomed Circuits Syst ; 12(4): 871-883, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29994719

RESUMEN

A quadrature synthetic aperture front-end receiver for B-mode ultrasound imaging is presented. The receiver targets small-scale imaging applications such as capsule endoscopy and low-cost portable devices. System complexity, area, power consumption, and cost are minimized using synthetic aperture beamforming (SAB), whereby signals are processed in a sequential manner using only a single channel. SAB is combined with quadrature (I/Q) sampling, which further reduces the bandwidth and computational load. I/Q demodulation is carried out using a full custom analog front-end (AFE), which comprises a low-noise, variable gain preamplifier, followed by a passive mixer, programmable gain amplifier (PGA) and active lowpass filter. A novel preamplifier design is proposed, with quasi-exponential time-gain control and low noise (${\text{5.42 nV}}/\sqrt{\text{Hz}}$ input-referred noise). Overall, the AFE consumes ${\text{7.8 mW}}$ (static power) and occupies ${\text{1.5}}\,\text{mm}\times {\text{1.5}}\,\text{mm}$ in AMS ${\text{0.35}}\,\mu \text{m}$ CMOS. Real-time SAB is carried out using a Spartan-6 FPGA, which dynamically apodises and focuses the data by interpolating and applying complex phase rotations to the I/Q samples. For a frame rate of ${\text{7}}\,\text{Hz}$ , the power consumption is ${\text{3.4}}\,\text{mW}/\text{channel}$ across an aperture of 64 elements. B-mode images were obtained using a database of ultrasound signals ( ${\text{2.5}}\,\text{MHz}$ center frequency) derived from a commercial ultrasound machine. The normalized root mean squared error between the quadrature SAB image and the RF reference image was ${\text{13}}\%$. Image quality/frame rate may be tuned by varying the degree of spatial compounding.


Asunto(s)
Ruido , Ultrasonografía/métodos , Amplificadores Electrónicos , Diseño de Equipo
14.
Biomed Eng Online ; 17(1): 83, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914479

RESUMEN

BACKGROUND: Point of care ultrasonography has been the focus of extensive research over the past few decades. Miniaturised, wireless systems have been envisaged for new application areas, such as capsule endoscopy, implantable ultrasound and wearable ultrasound. The hardware constraints of such small-scale systems are severe, and tradeoffs between power consumption, size, data bandwidth and cost must be carefully balanced. METHODS: In this work, two receiver architectures are proposed and compared to address these challenges. Both architectures uniquely combine low-rate sampling with synthetic aperture beamforming to reduce the data bandwidth and system complexity. The first architecture involves the use of quadrature sampling to minimise the signal bandwidth and computational load. Synthetic aperture beamforming (SAB) is carried out using a single-channel, pipelined protocol suitable for implementation on an FPGA/ASIC. The second architecture employs compressive sensing within the finite rate of innovation framework to further reduce the bandwidth. Low-rate signals are transmitted to a computational back-end (computer), which sequentially reconstructs each signal and carries out beamforming. RESULTS: Both architectures were tested using a custom hardware front-end and synthetic aperture database to yield B-mode images. The normalised root-mean-squared-error between the quadrature SAB image and the RF reference image was [Formula: see text] while the compressive SAB error was [Formula: see text] for the same degree of spatial compounding. The sampling rate is reduced by a factor of 2 (quadrature SAB) and 4.7 (compressive SAB), compared to the RF sampling rate. The quadrature method is implemented on FPGA, with a total power consumption of [Formula: see text] mW, which is comparable to state-of-the-art hardware topologies, but with significantly reduced circuit area. CONCLUSIONS: Through a novel combination of SAB and low-rate sampling techniques, the proposed architectures achieve a significant reduction in data transmission rate, system complexity and digital/analogue circuit area. This allows for aggressive miniaturisation of the imaging front-end in portable imaging applications.


Asunto(s)
Miniaturización/instrumentación , Ultrasonografía/instrumentación , Tecnología Inalámbrica , Procesamiento de Imagen Asistido por Computador
15.
Chemphyschem ; 19(10): 1215-1225, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29388305

RESUMEN

This paper presents the first application specific integrated chip (ASIC) for the monitoring of patients who have suffered a Traumatic Brain Injury (TBI). By monitoring the neurophysiological (ECoG) and neurochemical (glucose, lactate and potassium) signals of the injured human brain tissue, it is possible to detect spreading depolarisations, which have been shown to be associated with poor TBI patient outcome. This paper describes the testing of a new 7.5 mm2 ASIC fabricated in the commercially available AMS 0.35 µm CMOS technology. The ASIC has been designed to meet the demands of processing the injured brain tissue's ECoG signals, recorded by means of depth or brain surface electrodes, and neurochemical signals, recorded using microdialysis coupled to microfluidics-based electrochemical biosensors. The potentiostats use switchedcapacitor charge integration to record currents with 100 fA resolution, and allow automatic gain changing to track the falling sensitivity of a biosensor. This work supports the idea of a "behind the ear" wireless microplatform modality, which could enable the monitoring of currently non-monitored mobile TBI patients for the onset of secondary brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico , Monitorización Neurofisiológica , Electricidad , Humanos
16.
IEEE Trans Biomed Circuits Syst ; 11(3): 703-713, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28410111

RESUMEN

Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.


Asunto(s)
Calcio/fisiología , Modelos Biológicos , Animales , Simulación por Computador , Dinámicas no Lineales
17.
IEEE Trans Biomed Circuits Syst ; 11(2): 347-359, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28212099

RESUMEN

Optical neuron stimulation arrays are important for both in-vitro biology and retinal prosthetic biomedical applications. Hence, in this work, we present an 8100 pixel high radiance photonic stimulator. The chip module vertically combines custom made gallium nitride µ LEDs with a CMOS application specific integrated circuit. This is designed with active pixels to ensure random access and to allow continuous illumination of all required pixels. The µLEDs have been assembled on the chip using a solder ball flip-chip bonding technique which has allowed for reliable and repeatable manufacture. We have evaluated the performance of the matrix by measuring the different factors including the static, dynamic power consumption, the illumination, and the current consumption by each LED. We show that the power consumption is within a range suitable for portable use. Finally, the thermal behavior of the matrix is monitored and the matrix proved to be thermally stable.


Asunto(s)
Neuroestimuladores Implantables , Optogenética , Prótesis Visuales , Humanos , Luz , Estimulación Luminosa , Retina
18.
Ann Biomed Eng ; 45(4): 898-909, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27796516

RESUMEN

Exposure of endothelial cells to low and multidirectional blood flow is known to promote a pro-atherogenic phenotype. The mechanics of the vessel wall is another important mechano-stimulus within the endothelial cell environment, but no study has examined whether changes in the magnitude and direction of cell stretch can be pro-atherogenic. Herein, we developed a custom cell stretching device to replicate the in vivo stretch environment of the endothelial cell and examined whether low and multidirectional stretch promote nuclear translocation of NF-κB. A fluid-structure interaction model of the device demonstrated a nearly uniform strain within the region of cell attachment and a negligible magnitude of shear stress due to cyclical stretching of the cells in media. Compared to normal cyclical stretch, a low magnitude of cyclical stretch or no stretch caused increased expression of nuclear NF-κB (p = 0.09 and p < 0.001, respectively). Multidirectional stretch also promoted significant nuclear NF-κB expression, comparable to the no stretch condition, which was statistically higher than the low (p < 0.001) and normal (p < 0.001) stretch conditions. This is the first study to show that stretch conditions analogous to atherogenic blood flow profiles can similarly promote a pro-atherogenic endothelial cell phenotype, which supports a role for disturbed vessel wall mechanics as a pathological cell stimulus in the development of advanced atherosclerotic plaques.


Asunto(s)
Aterosclerosis/metabolismo , Núcleo Celular/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , FN-kappa B/metabolismo , Estrés Mecánico , Aterosclerosis/patología , Línea Celular , Núcleo Celular/patología , Células Endoteliales/patología , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
19.
Artículo en Inglés | MEDLINE | ID: mdl-29515912

RESUMEN

Epithelial Ovarian cancer (EOC) is the fifth most common cause of cancer death in females in the UK. It has long been recognized to be a set of heterogeneous diseases, with high grade serous being the most common subtype. The majority of patients with EOC present at an advanced stage (FIGO III-IV), and have the largest risk for disease recurrence from which a high percentage will develop resistance to chemotherapy. Despite continual advances in diagnostics, imaging, surgery and treatment of EOC, there has been little variation in the survival rates for patients with EOC. In this review we will introduce novel bioengineering advances in modelling the lymphatic system and real-time tissue monitoring to improve the clinical and therapeutic outcome for patients with EOC. We discuss the advent of the non-invasive "liquid biopsy" in the surveillance of patients undergoing treatment and follow-up. Finally, we present new bioengineering advances for palliative care of patients to lessen symptoms of patients with ascites and improve quality of life.

20.
Front Hum Neurosci ; 10: 212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242477

RESUMEN

Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30-40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...