Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548938

RESUMEN

A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.

2.
Dis Model Mech ; 16(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36825553

RESUMEN

The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Corazón/fisiología , Organoides , Ingeniería de Tejidos/métodos
3.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686629

RESUMEN

The specification of distinct cardiac lineages occurs before chamber formation and acquisition of bona fide atrial or ventricular identity. However, the mechanisms underlying these early specification events remain poorly understood. Here, we performed single cell analysis at the murine cardiac crescent, primitive heart tube and heart tube stages to uncover the transcriptional mechanisms underlying formation of atrial and ventricular cells. We find that progression towards differentiated cardiomyocytes occurs primarily based on heart field progenitor identity, and that progenitors contribute to ventricular or atrial identity through distinct differentiation mechanisms. We identify new candidate markers that define such differentiation processes and examine their expression dynamics using computational lineage trajectory methods. We further show that exposure to exogenous retinoic acid causes defects in ventricular chamber size, dysregulation in FGF signaling and a shunt in differentiation towards orthogonal lineages. Retinoic acid also causes defects in cell-cycle exit resulting in formation of hypomorphic ventricles. Collectively, our data identify, at a single cell level, distinct lineage trajectories during cardiac specification and differentiation, and the precise effects of manipulating cardiac progenitor patterning via retinoic acid signaling.


Asunto(s)
Corazón , Tretinoina , Animales , Diferenciación Celular , Atrios Cardíacos , Ventrículos Cardíacos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
4.
Nat Protoc ; 16(12): 5652-5672, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759383

RESUMEN

Heart-forming organoids (HFOs) derived from human pluripotent stem cells (hPSCs) are a complex, highly structured in vitro model of early heart, foregut and vasculature development. The model represents a potent tool for various applications, including teratogenicity studies, gene function analysis and drug discovery. Here, we provide a detailed protocol describing how to form HFOs within 14 d. In an initial 4 d preculture period, hPSC aggregates are individually formed in a 96-well format and then Matrigel-embedded. Subsequently, the chemical WNT pathway modulators CHIR99021 and IWP2 are applied, inducing directed differentiation. This highly robust protocol can be used on many different hPSC lines and be combined with manipulation technologies such as gene targeting and drug testing. HFO formation can be assessed by numerous complementary methods, ranging from various imaging approaches to gene expression studies. Here, we highlight the flow cytometry-based analysis of individual HFOs, enabling the quantitative monitoring of lineage formation.


Asunto(s)
Citometría de Flujo/métodos , Organogénesis/genética , Organoides/citología , Células Madre Pluripotentes/citología , Andamios del Tejido , Vía de Señalización Wnt/efectos de los fármacos , Benzotiazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Colágeno/química , Colágeno/farmacología , Combinación de Medicamentos , Descubrimiento de Drogas/métodos , Marcación de Gen/métodos , Corazón/diagnóstico por imagen , Corazón/efectos de los fármacos , Humanos , Laminina/química , Laminina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Organogénesis/efectos de los fármacos , Organoides/diagnóstico por imagen , Organoides/efectos de los fármacos , Organoides/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Proteoglicanos/química , Proteoglicanos/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Teratógenos/toxicidad
6.
Nat Biotechnol ; 39(6): 737-746, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33558697

RESUMEN

Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.


Asunto(s)
Corazón/embriología , Intestinos/embriología , Organoides/embriología , Tipificación del Cuerpo , Desarrollo Embrionario , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Factor Nuclear 4 del Hepatocito/genética , Proteína Homeótica Nkx-2.5/genética , Humanos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXF/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...