Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
IMA Fungus ; 7(2): 265-273, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27990333

RESUMEN

Raffaelea (Ophiostomatales) is a genus of more than 20 ophiostomatoid fungi commonly occurring in symbioses with wood-boring ambrosia beetles. We examined ambrosia beetles and plant hosts in the USA and Taiwan for the presence of these mycosymbionts and found 22 isolates representing known and undescribed lineages in Raffaelea. From 28S rDNA and ß-tubulin sequences, we generated a molecular phylogeny of Ophiostomatales and observed morphological features of seven cultures representing undescribed lineages in Raffaelea s. lat. From these analyses, we describe five new species in Raffaelea s. lat.: R. aguacate, R. campbellii, R. crossotarsa, R. cyclorhipidia, and R. xyleborina spp. nov. Our analyses also identified two plant-pathogenic species of Raffaelea associated with previously undocumented beetle hosts: (1) R. quercivora, the causative agent of Japanese oak wilt, from Cyclorhipidion ohnoi and Crossotarsus emancipatus in Taiwan, and (2) R. lauricola, the pathogen responsible for laurel wilt, from Ambrosiodmus lecontei in Florida. The results of this study show that Raffaelea and associated ophiostomatoid fungi have been poorly sampled and that future investigations on ambrosia beetle mycosymbionts should reveal a substantially increased diversity.

2.
Mycologia ; 108(4): 657-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27055571

RESUMEN

Factors that influence fungal communities in ambrosia beetle mycangia are poorly understood. The beetle that is responsible for spreading laurel wilt in SE USA, Xyleborus glabratrus, was examined at three sites along a 500 km N-S transect in Florida, each populated by host trees in the Lauraceae. Fungal phenotypes were quantified in mycangia of individual females that were collected from a site in Miami-Dade County (MDC), 25.8N, with swamp bay (Persea palustris), one in Highlands County (HC), 27.9N, with silkbay (P. humulis) and swamp bay and another in Alachua County (AC), 29.8N, with redbay (P. borbonia). Based on combined LSU, SSU and beta-tubulin datasets the most prominent phenotypes were Raffaelea lauricola (cause of laurel wilt), R. subalba, R. subfusca, R. fusca, R. arxii and an undescribed Raffaelea sp. Mean numbers of colony forming units (CFUs) of R. lauricola varied by location (P < 0.003), and a multivariate analysis, which accounted for the presence and relative abundance of fungal species, indicated that there were significant variations in mycangial communities among the sites; thus climate and vegetation might have affected fungal diversity and the relative abundance of these fungi in the mycangia of X. glabratus Statistically it was unlikely that any of the species influenced the presence and prevalence of another species.


Asunto(s)
Biodiversidad , Hongos/clasificación , Hongos/aislamiento & purificación , Gorgojos/microbiología , Animales , Análisis por Conglomerados , Recuento de Colonia Microbiana , ADN de Hongos/química , ADN de Hongos/genética , ADN de Plantas/química , ADN de Plantas/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Florida , Hongos/genética , Lauraceae/parasitología , Filogenia , ARN Ribosómico/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Tubulina (Proteína)/genética
3.
Fungal Biol ; 118(12): 970-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25457944

RESUMEN

The genus Raffaelea was established in 1965 when the type species, Raffaelea ambrosia, a symbiont of Platypus ambrosia beetles was described. Since then, many additional ambrosia beetle symbionts have been added to the genus, including the important tree pathogens Raffaelea quercivora, Raffaelea quercus-mongolicae, and Raffaelea lauricola, causal agents of Japanese and Korean oak wilt and laurel wilt, respectively. The discovery of new and the dispersal of described species of Raffaelea to new areas, where they can become invasive, presents challenges for diagnosticians as well as plant protection and quarantine efforts. In this paper, we present the first comprehensive multigene phylogenetic analysis of Raffaelea. As it is currently defined, the genus was found to not be monophyletic. On the basis of this work, Raffaelea sensu stricto is defined and the affinities of undescribed isolates are considered.


Asunto(s)
Escarabajos/microbiología , Ophiostomatales/clasificación , Filogenia , Animales , ADN de Hongos/genética , Ophiostomatales/genética , Ophiostomatales/aislamiento & purificación , Análisis de Secuencia de ADN , Simbiosis
4.
Plant Dis ; 98(3): 379-383, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30708438

RESUMEN

Laurel wilt, caused by the fungus Raffaelea lauricola, is an exotic disease that affects members of the Lauraceae plant family in the southeastern United States. The disease is spreading rapidly in native forests and is now found in commercial avocado groves in south Florida, where an accurate diagnostic method would improve disease management. A polymerase chain reaction (PCR) method based on amplifying the ribosomal small-subunit DNA, with a detection limit of 0.0001 ng, was found to be suitable for some quantitative PCR applications; however, it was not taxon specific. Genomic sequencing of R. lauricola was used to identify and develop primers to amplify two taxon-specific simple-sequence repeat (SSR) loci, which did not amplify from related taxa or host DNA. The new SSR loci PCR assay has a detection limit of 0.1 ng of R. lauricola DNA, is compatible with traditional and real-time PCR, was tested in four labs to confirm consistency, and reduces diagnostic time from 1 week to 1 day. Our work illustrates pitfalls to designing taxon-specific assays for new pathogens and that undescribed fungi can limit specificity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...