Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(5): 1685-1703, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35312799

RESUMEN

KEY MESSAGE: Low-lodging high-yielding wheat germplasm and SNP-tagged novel alleles for lodging were identified in a process that involved selecting donors through functional phenotyping for underlying traits with a designed phenotypic screen, and a crossing strategy involving multiple-donor × elite populations. Lodging is a barrier to achieving high yield in wheat. As part of a study investigating the potential to breed low-lodging high-yielding wheat, populations were developed crossing four low-lodging high-yielding donors selected based on lodging related traits, with three cultivars. Lodging was evaluated in single rows in an early generation and subsequently in plots in 2 years with contrasting lodging environment. A large number of lines lodged less than their recurrent parents, and some were also higher yielding. Heritability for lodging was high, but the genetic correlation between contrasting environments was intermediate-low. Lodging genotypic rankings in single rows did not correlate well with plots. Populations from the highest lodging background were genotyped (90 K iSelect BeadChip array). Fourteen markers on nine chromosomes were associated with lodging, differing under high- versus low-lodging conditions. Of the fourteen markers, ten were found to co-locate with previously identified QTL for lodging-related traits or at homoeologous locations for previously identified lodging-related QTL, while the remaining four markers (in chromosomes 2D, 4D, 7B and 7D) appear to map to novel QTL for lodging. Lines with more favourable markers lodged less, suggesting value in these markers as a selection tool. This study demonstrates that the combination of donor functional phenotyping, screen design and crossing strategy can help identify novel alleles in germplasm without requiring extensive bi-parental populations.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico , Fenotipo , Fitomejoramiento , Triticum/genética
2.
Plant Sci ; 282: 73-82, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31003613

RESUMEN

Reproductive organs are the main reason we grow and harvest most plant species as crops, yet they receive less attention from phenotyping due to their complexity and inaccessibility for analysis. This review highlights recent progress towards the quantitative high-throughput phenotyping of reproductive development, focusing on three impactful areas that are pivotal for plant breeding and crop production. First, we look at phenotyping phenology, summarizing the indirect and direct approaches that are available. This is essential for analysis of genotype by environment, and to enable effective management interpretation and agronomy and physiological interventions. Second, we look at pollen development and production, in addition to anther characteristics, these are critical points of vulnerability for yield loss when stress occurs before and during flowering, and are of particular interest for hybrid technology development. Third, we elaborate on phenotyping yield components, indirectly or directly during the season, with a numerical or growth related approach and post-harvest processing. Finally, we summarise the opportunities and challenges ahead for phenotyping reproductive growth and their feasibility and impact, with emphasis on plant breeding applications and targeted yield increases.


Asunto(s)
Productos Agrícolas/fisiología , Fitomejoramiento , Productos Agrícolas/genética , Genotipo , Fenotipo
3.
Funct Plant Biol ; 44(1): 52-61, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480546

RESUMEN

Many studies have investigated the effect of elevated CO2 (eCO2) in wheat, although few have evaluated the potential of genotypic variability in the response. Such studies are the next logical step in wheat climate change adaptation research, and they will require the evaluation of large numbers of genotypes. For practical reasons the preliminary studies are most likely to be conducted in controlled environments. There have been concerns that the root restriction related to container-grown plants can influence (1) the response to eCO2, (2) the detection of genotypic variability for various traits of interest, and (3) the ability to find the genotypes most responsive to eCO2. In the present study we evaluated two sizes of container - 1.4L pots and 7.5L columns - side-by side in a glasshouse environment and found that for 14 of 23 traits observed environment effects (ambient CO2, eCO2 or eCO2 and high temperature) were not consistent between plants grown in pots and in columns. More importantly, of the 21 traits showing genotypic variability, only 8 showed consistent genotype differences and rankings across both container types. Statistical analyses conducted separately for plants grown in pots or in columns showed different cultivars as being the most responsive to elevated CO2 and would thus, have led to different conclusions. This study is intended as a message of caution to controlled environment experimenters: using small containers can artificially create conditions that could either hide or overly express genotypic variability in some traits in response to eCO2 compared with what might be expected in larger containers.

4.
Glob Chang Biol ; 21(11): 4153-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26111197

RESUMEN

Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change.


Asunto(s)
Hordeum/crecimiento & desarrollo , Calor , Triticum/crecimiento & desarrollo , Argentina , Ritmo Circadiano , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Estaciones del Año
5.
Funct Plant Biol ; 41(5): 482-495, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32481007

RESUMEN

An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10°C and 11h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10°C or 28/14°C with 11h or 16h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed 13C and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14°C and 16h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.

6.
Funct Plant Biol ; 40(2): 172-184, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32481097

RESUMEN

Atmospheric CO2 levels have increased from ~280ppm in the pre-industrial era to 391ppm in 2012. High CO2 concentrations stimulate photosynthesis in C3 plants such as wheat, but large variations have been reported in the literature in the response of yield and other traits to elevated CO2 (eCO2). Few studies have investigated genotypic variation within a species to address issues related to breeding for specific adaptation to eCO2. The objective of this study was to determine the response to eCO2 of 20 wheat lines which were chosen for their contrasting expression in tillering propensity, water soluble carbohydrate (WSC) accumulation in the stem, early vigour and transpiration efficiency. Experiments were performed in control environment chambers and in a glasshouse with CO2 levels controlled at either 420ppm (local ambient) or 700ppm (elevated). The results showed no indication of a differential response to eCO2 for any of these lines and adaptive traits were expressed in a consistent manner in ambient and elevated CO2 environments. This implies that for these traits, breeders could expect consistent rankings in the future, assuming these results are validated under field conditions. Additional climate change impacts related to drought and high temperature are also expected to interact with these traits such that genotype rankings may differ from the unstressed condition.

7.
J Exp Bot ; 64(1): 143-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23213136

RESUMEN

In wheat, tillering and water-soluble carbohydrates (WSCs) in the stem are potential traits for adaptation to different environments and are of interest as targets for selective breeding. This study investigated the observation that a high stem WSC concentration (WSCc) is often related to low tillering. The proposition tested was that stem WSC accumulation is plant density dependent and could be an emergent property of tillering, whether driven by genotype or by environment. A small subset of recombinant inbred lines (RILs) contrasting for tillering was grown at different plant densities or on different sowing dates in multiple field experiments. Both tillering and WSCc were highly influenced by the environment, with a smaller, distinct genotypic component; the genotype × environment range covered 350-750 stems m(-2) and 25-210 mg g(-1) WSCc. Stem WSCc was inversely related to stem number m(-2), but genotypic rankings for stem WSCc persisted when RILs were compared at similar stem density. Low tillering-high WSCc RILs had similar leaf area index, larger individual leaves, and stems with larger internode cross-section and wall area when compared with high tillering-low WSCc RILs. The maximum number of stems per plant was positively associated with growth and relative growth rate per plant, tillering rate and duration, and also, in some treatments, with leaf appearance rate and final leaf number. A common threshold of the red:far red ratio (0.39-0.44; standard error of the difference=0.055) coincided with the maximum stem number per plant across genotypes and plant densities, and could be effectively used in crop simulation modelling as a 'cut-off' rule for tillering. The relationship between tillering, WSCc, and their component traits, as well as the possible implications for crop simulation and breeding, is discussed.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Tallos de la Planta/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Agua/química , Biomasa , Genotipo , Endogamia , Luz , Modelos Biológicos , Hojas de la Planta/fisiología , Estaciones del Año , Solubilidad , Triticum/genética
8.
Funct Integr Genomics ; 11(4): 585-97, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21789636

RESUMEN

High levels of water-soluble carbohydrates (WSC) provide an important source of stored assimilate for grain filling in wheat. To better understand the interaction between carbohydrate metabolism and other metabolic processes associated with the WSC trait, a genome-wide expression analysis was performed using eight field-grown lines from the high and low phenotypic tails of a wheat population segregating for WSC and the Affymetrix wheat genome array. The 259 differentially expressed probe sets could be assigned to 26 functional category bins, as defined using MapMan software. There were major differences in the categories to which the differentially expressed probe sets were assigned; for example, probe sets upregulated in high relative to low WSC lines were assigned to category bins such as amino acid metabolism, protein degradation and transport and to be involved in starch synthesis-related processes (carbohydrate metabolism bin), whereas downregulated probe sets were assigned to cell wall-related bins, amino acid synthesis and stress and were involved in sucrose breakdown. Using the set of differentially expressed genes as input, chemical-protein network analyses demonstrated a linkage between starch and N metabolism via pyridoxal phosphate. Twelve C and N metabolism-related genes were selected for analysis of their expression response to varying N and water treatments in the field in the four high and four low WSC progeny lines; the two nitrogen/amino acid metabolism genes demonstrated a consistent negative association between their level of expression and level of WSC. Our results suggest that the assimilation of nitrogen into amino acids is an important factor that influences the levels of WSC in the stems of field-grown wheat.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Nitrógeno/metabolismo , Tallos de la Planta/genética , Triticum/genética , Agua/metabolismo , Epistasis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Tallos de la Planta/metabolismo , Solubilidad , Triticum/crecimiento & desarrollo , Triticum/metabolismo
9.
Funct Plant Biol ; 38(5): 347-354, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480891

RESUMEN

There is little consensus on whether having a large root system is the best strategy in adapting wheat (Triticum aestivum L.) to water-limited environments. We explore the reasons for the lack of consensus and aim to answer the question of whether a large root system is useful in adapting wheat to dry environments. We used unpublished data from glasshouse and field experiments examining the relationship between root system size and their functional implication for water capture. Individual root traits for water uptake do not describe a root system as being large or small. However, the recent invigoration of the root system in wheat by indirect selection for increased leaf vigour has enlarged the root system through increases in root biomass and length and root length density. This large root system contributes to increasing the capture of water and nitrogen early in the season, and facilitates the capture of additional water for grain filling. The usefulness of a vigorous root system in increasing wheat yields under water-limited conditions maybe greater in environments where crops rely largely on seasonal rainfall, such as the Mediterranean-type environments. In environments where crops are reliant on stored soil water, a vigorous root system increases the risk of depleting soil water before completion of grain filling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...