Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 104(6): 1182-91, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26097161

RESUMEN

PURPOSE: The purpose of this study was to evaluate the bone formation capability of polyetheretherketone (PEEK) and carbon fiber-reinforced PEEK (CFR-PEEK) implants coated with different titanium and hydroxyapatite plasma-sprayed layers after 2 and 12 weeks. METHODS: In six sheep 108 implants were placed in the pelvis. Altogether six different surface modifications were tested. After 2 and 12 weeks, n = 3 implants per group were examined histologically and n = 6 implants per group were tested by a pull-out test. RESULTS: Biomechanically (p = 0.001) as well as histologically (p > 0.05) surface coating of PEEK/CFR-PEEK led to an increase of osseointegration from 2 to 12 weeks. After 12 weeks, coated implants demonstrated significant (p < 0.001) higher pull-out values in comparison to uncoated implants. Overall, the double coating (titanium bond layer and hydroxyapatite top layer) showed the most favorable results after 2 and 12 weeks. CONCLUSIONS: Plasma-sprayed titanium and hydroxyapatite coatings on PEEK or CFR-PEEK demonstrated a significant improvement of osseointegration. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1182-1191, 2016.


Asunto(s)
Carbono/química , Materiales Biocompatibles Revestidos/química , Durapatita/química , Implantes Experimentales , Cetonas/química , Oseointegración , Polietilenglicoles/química , Ovinos/metabolismo , Animales , Benzofenonas , Proyectos Piloto , Polímeros , Titanio
2.
Clin Oral Implants Res ; 26(5): 572-80, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24989873

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the clinical performance of local cancellous bone amelioration by a 70:30 poly-(L-lactide-co-D,L-Lacide) copolymer with two different implant designs on primary stability and after 4 and 12 weeks of healing time. MATERIAL AND METHODS: In six sheep, n = 36 implants (TH) with a conditioned, sandblasted, thermal acid-etched micro-rough surface and n = 36 implants (NB) with a highly crystalline and phosphate-enriched anodized titanium oxide surface were placed in the pelvic bone. Using an ultrasound-based process named Constant Amelioration Process (CAP), half of peri-implant trabecular bone structures were locally tested with 70:30 poly-(L-lactide-co-D,L-Lacide) copolymer in both implant groups, TH and NB. The CAP technology employs ultrasonic energy to liquefy 70:30 poly-(L-lactide-co-D,L-Lacide) which enters the inter-trabecular space, leading to local reinforcement of the cancellous bone structure after solidification of the copolymer. The CAP test group was compared with reference implants placed with the conventional site preparation according to the manufacturers' description. Primary stability was assessed by the measurement of torque-in values and implant stability quotient (ISQ; n = 18 per group). Secondary stability was analyzed by biomechanical removal torque testing after 4 and 12 weeks (n = 9 per group). RESULTS: Insertion torque value (23.3 N cm ± 13.6) of reference TH implants demonstrated a statistically significant (P = 0.00) difference in comparison with test TH implants (41.9 N cm ± 19.5). Reference NB implants revealed a statistically significant (P = 0.03) lower insertion torque value (23.7 N cm ± 13.5) than test NB implants (39.7 N cm ± 18.6). ISQ values increased for all implants from initial implant placement until sacrifice at 12 weeks. Reference TH implants tended to result in an increase in torque values from 4 weeks (181.9 N cm ± 22.8) to 12 weeks (225.7 N cm ± 47.4). This trend could be also proven for implants of test sites (4 week: 176.8 N cm ± 24.1; 12 week: 201.5 N cm ± 53.4). For reference, NB implants a non-significant increase in removal torque values from 4 weeks (146. 7 N cm ± 18.0) to 12 weeks (170.2 N cm ± 40.4) was observed. Removal torque values of test NB implants did not increase from 4 weeks (153.3 N cm ± 21.5) to 12 weeks (146.1 N cm ± 37.5). CONCLUSION: Biomechanical data proved significantly enhanced primary stability of dental implants after local amelioration without long-term sequelae and irrespective of implant design. After 4- and 12-week healing time, removal torque of locally test implants was as high as for control implants, and osseointegration was therefore not influenced by the CAP process. No correlation between ISQ values and torque values was found.


Asunto(s)
Implantes Dentales , Retención de Prótesis Dentales , Poliésteres , Animales , Fenómenos Biomecánicos , Diseño de Prótesis Dental , Análisis del Estrés Dental , Ensayo de Materiales , Ovinos , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...