Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(2): 299-304, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34877950

RESUMEN

Divalent transition metals such as Co(II) are important targets for removal from water sources, due to their potential toxicity as well as their high value. In this study, we found that a series of porous organic polymers based on amide-linked tetraphenylmethane units are effective Co(II) ion adsorbents in aqueous solution. To increase the density of Co(II) binding sites, we then developed a templated synthesis in which the branched, rigid monomers are pre-assembled around Co(II) ions prior to polymerization. After polymer formation, the Co(II) template ions are removed to yield a material rich in Co(II) binding sites. Ion adsorption isotherms show that the Co(II)-templated material has an ion adsorption capacity significantly greater than those of the non-templated materials, highlighting the utility of a templated synthetic route. SEM and TEM images show the morphology of the templated polymer to be dramatically different from the non-templated polymers and to be similar in size and shape to the Co(II)-monomer precursors, emphasizing the role of the template ions in directing the formation of the resulting polymer. This guest-templated approach requires no functionalization of the generic monomer and represents a promising synthetic route to high-capacity ion adsorbents for water purification and aqueous separations.

2.
Angew Chem Int Ed Engl ; 54(32): 9249-52, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26089294

RESUMEN

Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.


Asunto(s)
Depuradores de Radicales Libres/química , Oro/química , Compuestos de Sulfhidrilo/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Fosfatidilcolinas/química
3.
Chem Commun (Camb) ; 51(7): 1240-3, 2015 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25472705

RESUMEN

Gold nanoparticle catalysis of chemical transformations has emerged as a subject of intense interest over the past decade. In particular, Au25(SR)18 has emerged as a model catalyst. In an effort to investigate their potential as intact, homogeneous, unsupported catalysts, we have discovered that Au25(SR)18 clusters are not stable in oxidizing conditions reported for catalytic styrene oxidation. Further investigation suggests that the active catalytic species is an Au(I) species resulting from oxidative decomposition of the starting gold cluster. This conclusion appears independent of R-group on thiolate-ligated Au25(SR)18 clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA