Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(14): 149901, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476499

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.125.163001.

2.
Phys Rev Lett ; 125(16): 163001, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124859

RESUMEN

We report on the first coherent excitation of the highly forbidden ^{2}S_{1/2}→^{2}F_{7/2} electric octupole (E3) transition in a single trapped ^{172}Yb^{+} ion, an isotope without nuclear spin. Using the transition in ^{171}Yb^{+} as a reference, we determine the transition frequency to be 642 116 784 950 887.6(2.4) Hz. We map out the magnetic field environment using the forbidden ^{2}S_{1/2}→^{2}D_{5/2} electric quadrupole (E2) transition and determine its frequency to be 729 476 867 027 206.8(4.4) Hz. Our results are a factor of 1×10^{5} (3×10^{5}) more accurate for the E2 (E3) transition compared to previous measurements. The results open up the way to search for new physics via precise isotope shift measurements and improved tests of local Lorentz invariance using the metastable ^{2}F_{7/2} state of Yb^{+}.

3.
Phys Rev Lett ; 123(14): 143001, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31702181

RESUMEN

High-harmonic generation (HHG) is widely used for up-conversion of amplified (near) infrared ultrafast laser pulses to short wavelengths. We demonstrate that Ramsey-comb spectroscopy, based on two such pulses derived from a frequency-comb laser, enables us to observe phase effects in this process with a few mrad precision. As a result, we could perform the most accurate spectroscopic measurement based on light from HHG, illustrated with a determination of the 5p^{6}→5p^{5}8s^{2}[3/2]_{1} transition at 110 nm in ^{132}Xe. We improve its relative accuracy 10^{4} times to a value of 2.3×10^{-10}. This is 3.6 times better than shown before involving HHG, and promising to enable 1S-2S spectroscopy of He^{+} for fundamental tests.

4.
Phys Rev Lett ; 120(4): 043204, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29437464

RESUMEN

Molecular hydrogen and its isotopic and ionic species are benchmark systems for testing quantum chemical theory. Advances in molecular energy structure calculations enable the experimental verification of quantum electrodynamics and potentially a determination of the proton charge radius from H_{2} spectroscopy. We measure the ground state energy in ortho-H_{2} relative to the first electronically excited state by Ramsey-comb laser spectroscopy on the EF^{1}Σ_{g}^{+}-X^{1}Σ_{g}^{+}(0,0) Q1 transition. The resulting transition frequency of 2 971 234 992 965(73) kHz is 2 orders of magnitude more accurate than previous measurements. This paves the way for a considerably improved determination of the dissociation energy (D_{0}) for fundamental tests with molecular hydrogen.

5.
Phys Rev Lett ; 117(17): 173201, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27824468

RESUMEN

High-precision spectroscopy in systems such as molecular hydrogen and helium ions is very interesting in view of tests of quantum electrodynamics and the proton radius puzzle. However, the required deep ultraviolet and shorter wavelengths pose serious experimental challenges. Here we show Ramsey-comb spectroscopy in the deep ultraviolet for the first time, thereby demonstrating its enabling capabilities for precision spectroscopy at short wavelengths. We excite ^{84}Kr in an atomic beam on the two-photon 4p^{6}→4p^{5}5p[1/2]_{0} transition at 212.55 nm. It is shown that the ac-Stark shift is effectively eliminated, and combined with a counterpropagating excitation geometry to suppress Doppler effects, a transition frequency of 2 820 833 101 679(103) kHz is found. The uncertainty of our measurement is 34 times smaller than the best previous measurement, and only limited by the 27 ns lifetime of the excited state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...