Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(29): 6516-6531, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37449838

RESUMEN

The strong CO ligand vibrations of an octahedral complex, fac-[Re (CO)3(bpy)(CH3CN)]+, in acetonitrile are observed at 2040 and 1932 cm-1. Facial rhenium tricarbonyl systems offer very strong and isolated CO vibrations with the potential for interactions between these vibrations. This work first identifies the dominant ion-pair species using attenuated total reflection infrared (ATR-IR) absorption spectra on a dilution series and then determines the strength of these CO ligand vibrations (as isolated vibrations) with a combination of ATR-IR and etalon-based measurements that determine the absolute complex index of refraction of the solution. Finally, the etalon experiments are modeled to study the interaction between vibrations, which is a property not embedded in the solution's complex index of refraction. The ATR-IR spectra are accomplished on a dilution series as well as a larger set of spectra as these solutions evaporated. The A'(1) CO ligand band at 2040 cm-1 is fit with a sum of three Lorentzian functions characterizing the distribution of free, solvent-separated, and contact ion pairs of this octahedral complex vs concentration. The other CO ligand band at 1932 cm-1 is broader and complicated by the dynamics of vibrational interactions, the unresolved splitting of the A'(2) and A″ CO vibrations, and ion-pair speciation. The etalon transmission measurements vs angle were on a 0.029 M solution, and Rabi splittings of 19 and 38 cm-1 were observed for the A'(1) CO vibration and the unresolved A'(2) + A″ CO vibrations, respectively. The great strength of the CO ligand vibrations is evident despite the use of a dilute solution. Integrated band intensities are reported in comparison to hybrid density functional calculations for isolated vibrations. Then, the observed Rabi splittings are modeled to obtain the coupling strength of the CO ligand vibration with etalon cavity modes and with each other. In summary, this work develops a method to determine the concentration of these solutions from the ATR-IR spectrum, characterizes the ion-pairing, shows that the index of refraction is not constant in the IR spectral region of interest, and develops an interaction Hamiltonian that characterizes cavity-vibration and vibration-vibration coupling.

2.
J Phys Chem B ; 127(4): 980-995, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36694956

RESUMEN

A new method is established using an etalon cavity to assist in the determination of the wavelength-dependent complex index of refraction of a solution throughout the mid-infrared range. The results are used to study the cavity-vibration polaritons of PF6- in acetonitrile. Mixed states are formed by placing solution inside a pair of parallel plate mirrors with a wavelength-scale spacing, i.e., within an etalon, such that there are cavity states that are angle-tuned into resonance with the strong P-F vibrations. The dominant ν3 vibrations of PF6- consist of nearly triply degenerate oscillations of the partial-positively charged phosphorous against antisymmetric concerted motions of different sets of fluorine atoms with partial negative charges. These vibrations are dominant even though the solute is 29 times less concentrated than the solvent on a molar basis. The first part of the paper describes the method of determining the complex index of refraction of the solution from a combination of etalon transmission maxima and the attenuated total reflection (ATR) absorption spectrum of the solution. The results are presented as an analytical function including a sum of 37 vibrational contributions. Absolute integrated isolated band intensities were determined to be 463 ± 4, 462 ± 7, and 266 ± 4 km/mol for the three ν3 PF6- vibrations at 841.4, 847.4, and 854.0 cm-1, respectively, which sum to 1191 ± 9 km/mol for the ν3 band. Then, the results are used to simulate the measured etalon transmission using the transfer matrix (TM) method with and without the ν3 target vibrations. The etalon transmission simulations reconstruct the position of cavity modes in the absence of target vibrations. They provide input data for the testing of simple quantum mechanical models for the interaction of vibrations with cavity modes and the interactions of vibrations with other vibrations within the molecule and between solute and solvent. The model shows that the nearly degenerate ν3 vibrations interact with each other with a vibration-vibration coupling of 33 ± 5 cm-1. This is comparable to the cavity-vibration coupling of 30.4 ± 2.9 cm-1 of the two strongest vibrations of PF6-.

3.
Methods Mol Biol ; 1776: 533-552, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29869264

RESUMEN

Metallic nanoscale 3D architectures concentrate electromagnetic energy at precise spatial locations to enable sensing and photocatalysis applications. We have developed solution-based methods to reproducibly fabricate 3D gold nanostructures useful as efficient surface-enhanced Raman spectroscopy (SERS) biosensors. Virus capsids were recruited as templates to assemble gold nanoparticles on their surfaces at well-defined locations to prepare the nanoscale 3D structures. Cowpea mosaic virus (CPMV) and its variants were selected as specific templates due to their high symmetry, scalability, and stability, which have proven useful in materials science applications. While the methods described herein were optimized for the CPMV capsids, they also provide a useful starting point for researchers who are working toward the nanoassembly of metal nanoparticles on other protein scaffolds.


Asunto(s)
Técnicas Biosensibles/métodos , Comovirus/genética , Nanopartículas del Metal/química , Virión/genética , Cápside/química , Comovirus/química , Oro/química , Nanoestructuras/química , Espectrometría Raman , Virión/química
4.
Sensors (Basel) ; 18(2)2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364153

RESUMEN

We describe the use of a paper-based probe impregnated with a vanadium-containing polyoxometalate anion, [PMo11VO40]5-, on screen-printed carbon electrodes for the electrochemical determination of chlorate. Cyclic voltammetry (CV) and chronocoulometry were used to characterize the ClO3- response in a pH = 2.5 solution of 100 mM sodium acetate. A linear CV current response was observed between 0.156 and 1.25 mg/mL with a detection limit of 0.083 mg/mL (S/N > 3). This performance was reproducible using [PMo11VO40]5--impregnated filter paper stored under ambient conditions for as long as 8 months prior to use. At high concentration of chlorate, an additional catalytic cathodic peak was seen in the reverse scan of the CVs, which was digitally simulated using a simple model. For chronocoulometry, the charge measured after 5 min gave a linear response from 0.625 to 2.5 mg/mL with a detection limit of 0.31 mg/mL (S/N > 3). In addition, the slope of charge vs. time also gave a linear response. In this case the linear range was from 0.312 to 2.5 mg/mL with a detection limit of 0.15 mg/mL (S/N > 3). Simple assays were conducted using three types of soil, and recovery measurements reported.

5.
ACS Appl Mater Interfaces ; 8(31): 20371-8, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27419265

RESUMEN

Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.


Asunto(s)
Textiles , Reproducibilidad de los Resultados
6.
Biosens Bioelectron ; 77: 306-14, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432193

RESUMEN

Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or "hot spots". We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25 ng/µl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors.


Asunto(s)
ADN/análisis , ADN/genética , Nanopartículas del Metal/química , Espectrometría Raman/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Virión/ultraestructura , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Oro/química , Nanopartículas del Metal/ultraestructura , Nanotecnología/instrumentación , Impresión Tridimensional
7.
PLoS One ; 9(6): e100203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24941104

RESUMEN

We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization.


Asunto(s)
Cobre/química , Galio/química , Indio/química , Nanopartículas del Metal/química , Difusión , Indoles/química , Nanopartículas del Metal/ultraestructura , Microtecnología/instrumentación , Molibdeno/química , Óxidos , Procesos Fotoquímicos , Poliaminas/química , Polímeros/química , Poliestirenos/química , Dióxido de Silicio/química , Soluciones , Sulfuros
8.
Small ; 10(15): 3058-63, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24733721

RESUMEN

The assembly of plasmonic nanoparticles with precise spatial and orientational order may lead to structures with new electromagnetic properties at optical frequencies. The directed self-assembly method presented controls the interparticle-spacing and symmetry of the resulting nanometer-sized elements in solution. The self-assembly of three-dimensional (3D), icosahedral plasmonic nanosclusters (NCs) with resonances at visible wavelengths is demonstrated experimentally. The ideal NCs consist of twelve gold (Au) nanospheres (NSs) attached to thiol groups at predefined locations on the surface of a genetically engineered cowpea mosaic virus with icosahedral symmetry. In situ dynamic light scattering (DLS) measurements confirm the NSs assembly on the virus. Transmission electron micrographs (TEM) demonstrate the ability of the self-assembly method to control the nanoscopic symmetry of the bound NSs, which reflects the icosahedral symmetry of the virus. Both, TEM and DLS show that the NCs comprise of a distribution of capsids mostly covered (i.e., 6-12 NS/capsid) with NSs. 3D finite-element simulations of aqueous suspensions of NCs reproduce the experimental bulk absorbance measurements and major features of the spectra. Simulations results show that the fully assembled NCs give rise to a 10-fold surface-averaged enhancement of the local electromagnetic field.


Asunto(s)
Oro/química , Nanopartículas del Metal/ultraestructura , Impresión Molecular/métodos , Nanocompuestos/ultraestructura , Resonancia por Plasmón de Superficie/métodos , Virus/ultraestructura , Adsorción , Cristalización/métodos , Luz , Ensayo de Materiales , Nanopartículas del Metal/química , Nanocompuestos/química , Dispersión de Radiación , Propiedades de Superficie , Virus/química
9.
Langmuir ; 28(45): 15831-43, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23106264

RESUMEN

We systematically investigate the effects of divalent anions on the assembly of polyelectrolyte multilayers by fabricating polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) multilayer films from aqueous solutions containing SO(4)(2-), HPO(4)(2-), or organic dicarboxylate dianions. The chosen concentrations of these anions (i.e., ≤0.05 M) allow us to isolate their effects on the assembly process from those of the polyelectrolyte solubility or solution ionic strength (maintained constant at µ = 1.00 M by added NaCl). Compared to a control film prepared from solutions containing only Cl(-) anions, stratified multilayers deposited in the presence of dianions exhibit increased UV absorbance, thickness, and roughness. From the dependence of film properties on the solution concentration of SO(4)(2-) and number of polyelectrolyte layers deposited, we derive a generic model for the PSS/PAH multilayer formation that involves adsorption of PAH aggregates formed in solution via electrostatic interactions of PAH with bridging dianions. Experiments using HPO(4)(2-) and organic dicarboxylate species of varying structure indicate that the separation, rigidity, and angle between the discrete negatively charged sites in the dianion govern the formation of the PAH aggregates, and therefore also the properties of the multilayer film. A universal linear relationship between film UV absorbance and thickness is observed among all dianion types or concentrations, consistent with the model.


Asunto(s)
Ácidos Dicarboxílicos/química , Fosfatos/química , Poliaminas/química , Poliestirenos/química , Sulfatos/química , Aniones/química , Electrólitos/química , Sales (Química)/química , Propiedades de Superficie
10.
ACS Appl Mater Interfaces ; 4(5): 2358-68, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22563700

RESUMEN

We describe a process for selective metallization of paper substrates bearing inkjet printed patterns of a commercial Pd/Sn colloidal catalyst ink plated using a commercial electroless Cu bath. The electrical conductivity of the Cu films is analyzed as a function of feature geometry (line dimensions (L) and spacing (S)), type of paper (P), age of the Pd/Sn patterns (A), plating time (T), and plating temperature (H) using a two-level factorial design. Conductivity is influenced predominantly by the P, T, and H factors, with lesser contributions attributed to pair-wise interactions among several of the variables studied. Increases in T and/or H enhance conductivity of the Cu films, whereas increases in P, corresponding to the use of rougher, more porous, paper substrates, yield Cu films exhibiting decreased conductivity. Our analysis leads to a model that predicts Cu film conductivity well over the ranges of variables examined, provides guidelines for identification of optimum conditions for plating highly conductive Cu films, and identifies areas for further process improvement.

11.
Chem Commun (Camb) ; 47(40): 11348-50, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21927757

RESUMEN

We have demonstrated directional photoinduced electron transfer in paraquat silicate thin films containing entrapped ruthenium(II)-tris(bathophenanthroline-disulfonate (RuBPS). The films were made by electrochemically-induced hydrolysis of a silane analogue of paraquat with ruthenium(II)-tris(bathophenanthroline-disulfonate as its ion pair.


Asunto(s)
Compuestos Organometálicos/química , Paraquat/química , Procesos Fotoquímicos , Silicatos/química , Electroquímica , Transporte de Electrón
12.
Nat Mater ; 9(12): 1023-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20935657

RESUMEN

Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80 µN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.


Asunto(s)
Ingeniería/métodos , Nanoestructuras/química , Animales , Anisotropía , Biomimética , Mariposas Diurnas/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Modelos Biológicos , Nanotubos/química , Tamaño de la Partícula , Polímeros/química , Porosidad , Propiedades de Superficie , Temperatura , Grabación en Video , Agua/química , Humectabilidad , Alas de Animales/fisiología , Xilenos/química
13.
Langmuir ; 26(6): 4382-91, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-20095592

RESUMEN

We describe a rapid, reliable method of preparing nanoporous Ni or Co films using nanostructured poly(chloro-p-xylylene) (nanoPPX) films as templates. The nanoPPX films are vapor deposited onto Si substrates using oblique angle polymerization (OAP), resulting in the formation of an obliquely aligned PPX nanorod array on the substrate. The nanoPPX films are then subjected to noncovalent functionalization using an aromatic ligand (i.e., pyridine) by means of treatment with either an aqueous solution of the ligand or ligand vapor. The results of quartz crystal microbalance and X-ray diffraction studies support a model in which pyridine adsorption is facilitated by the formation of pi-pi interactions with aromatic moieties in the amorphous surface regions of nanoPPX. The physisorbed pyridine in the nanoPPX film can subsequently bind a catalytic Pd(II)-based colloidal seed layer. Continuous, conformal Ni or Co films, characterized by FIB/SEM and AFM, are grown on the Pd(II)-laden nanoPPX films using electroless metallization. Analogous metallization of a conventionally deposited planar PPX film results in noncontinuous or patchy metal deposits. Such behavior is attributed to the sluggish adsorption of pyridine in the planar PPX film, resulting in an approximately 22-fold decrease in the quantity of pyridine adsorbed compared to that in a nanoPPX film. Consequently, the level of Pd(II) bound by pyridine on a planar PPX film is insufficient to catalyze continuous metallization. Results of a statistical two-level factorial design indicate that the morphology of the metal layer formed on a nanoPPX film is profoundly influenced by the ligand adsorption condition (i.e., aqueous ligand vs ligand vapor treatment) and is correlated to the catalytic activity of Co films for the production of hydrogen from sodium borohydride decomposition.

14.
Langmuir ; 25(3): 1785-9, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19123909

RESUMEN

Patterning of metal colloids by inkjet printing on paper is demonstrated as a precursor to electroless metallization. The development of the metal pattern is followed in terms of the conductivity and mass of the metal deposited and is shown to have critical phase behavior. The utility of this technique for large-area microscale patterning is demonstrated. Sample patterns of frequency-selective surface designs were manufactured and shown to conform to computationally modeled expectations in the microwave regime.

15.
ACS Appl Mater Interfaces ; 1(1): 4-25, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20355746

RESUMEN

The fabrication of electrical interconnects to provide power for and communication with computers as their component complementary metal oxide semiconductor (CMOS) devices continue to shrink in size presents significant materials and processing compatibility challenges. We describe here our efforts to address these challenges using top-surface imaging and hybrid photoresist/self-assembled monolayer patterning approaches, in conjunction with selective electroless metal deposition, to develop processes capable of fabricating appropriate submicron and nanoscale metal features useful as electrical interconnects, as well as plasma-etch-resistant masks and metal diffusion barriers. Our efforts focus on the development of cost-effective methods compatible with a manufacturing environment that satisfy materials and process constraints associated with CMOS device production. We demonstrate the fabrication of approximately 50-nm-width features in metal with high fidelity and sufficient control of edge acuity to satisfy current industry design rules using our processes and discuss the challenges and opportunities for fabrication of analogous sub-10-nm metal features.

16.
Langmuir ; 24(8): 3888-96, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18302431

RESUMEN

We describe reproducible protocols for the chemisorption of self-assembled monolayers (SAMs), useful as imaging layers for nanolithography applications, from p-chloromethylphenyltrichlorosilane (CMPS) and 1-(dimethylchlorosilyl)-2-(p,m-chloromethylphenyl)ethane on native oxide Si wafers. Film chemisorption was monitored and characterized using water contact angle, X-ray photoelectron spectroscopy, and ellipsometry measurements. Atomic force microscopy was used to monitor the onset of multilayer deposition for CMPS films, ultimately allowing film macroscopic properties to be correlated with their surface coverage and nanoscale morphologies. Although our results indicate the deposition of moderate coverage, disordered SAMs under our conditions, their quality is sufficient for the fabrication of sub-100-nm-resolution metal features. The significance of our observations on the design of future imaging layers capable of molecular scale resolution in nanolithography applications is briefly discussed.


Asunto(s)
Hidrocarburos Clorados/síntesis química , Silanos/síntesis química , Siloxanos/síntesis química , Hidrocarburos Clorados/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Estructura Molecular , Silanos/química , Siloxanos/química , Propiedades de Superficie
17.
J Phys Chem B ; 110(43): 21487-96, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17064099

RESUMEN

Ligand-stabilized platinum nanoparticles (Pt NPs) can be used to build well-defined three-dimensional (3-D) nanostructured electrodes for better control of the catalyst architecture in proton exchange membrane fuel cells (PEMFCs). Platinum NPs of 1.7 +/- 0.5 nm diameter stabilized by the water-soluble phosphine ligand, tris(4-phosphonatophenyl)phosphine (TPPTP, P(4-C6H4PO3H2)3), were prepared by ethylene glycol reduction of chloroplatinic acid and subsequent treatment of the isolated nanoparticles with TPPTP. The isolated TPPTP-stabilized Pt NPs were characterized by multinuclear magnetic resonance spectroscopy (31P and 195Pt NMR), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). The negatively charged TPPTP-Pt NPs were electrostatically deposited onto a glassy carbon electrode (GCE) modified with protonated 4-aminophenyl functional groups (APh). Multilayers were assembled via electrostatic layer-by-layer deposition with cationic poly(allylamine HCl) (PAH). These multilayer films are active for the key hydrogen fuel cell reactions, hydrogen oxidation (anode) and oxygen reduction (cathode). Using a rotating disk electrode configuration, fully mass-transport limited kinetics for hydrogen oxidation was obtained after 3 layers of TPPTP-Pt NPs with a total Pt loading of 4.2 microg/cm2. Complete reduction of oxygen by four electrons was achieved with 4 layers of TPPTP-Pt NPs and a total Pt loading of 5.6 microg/cm2. A maximum current density for oxygen reduction was reached with these films after 5 layers resulting in a mass-specific activity, i(m), of 0.11 A/mg(Pt) at 0.9 V. These films feature a high electrocatalytic activity and can be used to create systematic changes in the catalyst chemistry and architecture to provide insight for building better electrocatalysts.

18.
Nano Lett ; 6(1): 29-33, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16402782

RESUMEN

We demonstrate the fabrication of sub-100-nm DNA surface patterns by scanning near-field optical lithography using a near-field scanning optical microscope coupled to a UV laser and a chloromethylphenylsiloxane (CMPS) self-assembled monolayer (SAM). The process involves 244-nm exposure of the CMPS SAM to create nanoscale patterns of surface carboxylic acid functional groups, followed by their conversion to the N-hydroxysuccinimidyl ester and reaction of the active ester with DNA to spatially control DNA grafting with high selectivity.


Asunto(s)
ADN/química , Rayos Láser , Nanoestructuras , Siloxanos/química , Animales , Ácidos Carboxílicos/química , Bovinos , Microscopía de Fuerza Atómica , Succinimidas/química , Propiedades de Superficie
19.
Inorg Chem ; 42(2): 516-24, 2003 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-12693234

RESUMEN

Phosphonate and phosphonic acid functionalized phosphine complexes of platinum(II) were prepared via direct reaction of the ligands with K2PtCl4 in water. Either cis or trans geometries were found depending on the nature of the ligand. The crystal structure of P(3-C6H4PO3H2)3.2H2O (6b) (triclinic, P1, a = 8.3501(6) A, b = 10.1907(6) A, c = 14.6529(14) A, alpha = 94.177(6) degrees, beta = 105.885(6) degrees, gamma = 108.784(5) degrees, Z = 2) shows a layered arrangement of the phosphonic acid. The phosphonodiamide complex cis-[PtCl2(P[4-C6H4PO[N(CH3]2]]3)2].3H2O (10) was synthesized in 89% yield and hydrolyzed to the phosphonic acid complex using dilute HCl. Aqueous phase and silica gel supported catalytic phosphonylation of phenyl triflate using palladium phosphine complexes was achieved. A molybdenum complex, Mo(CO)5[P3-C6H4PO3H2)3] (11), was synthesized in situ and grafted to an alumina surface. XPS, RBS, and AFM studies confirm the formation of a monolayer of 11 on the alumina surface.

20.
J Am Chem Soc ; 125(37): 11259-63, 2003 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-16220946

RESUMEN

We describe the fabrication of metallic Cu spiral/helical nanostructures prepared via selective electroless metallization of a phospholipid microtubule template. The metallization template is created through selective, sequential adsorption of the oppositely charged polyelectrolytes, sodium poly(styrenesulfonate) (PSS) and poly(ethyleneimine) (PEI), onto nanoscale seams naturally occurring on the microtubule surface. A negatively charged Pd(II) nanoparticle catalyst is bound to the terminal cationic PEI layer of the multilayer film and initiates selective template metallization to form the helical Cu nanostructures. Details of the process are presented, and a mechanism and factors affecting the control of the feature critical dimensions are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...