Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(8): 112916, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527038

RESUMEN

Endolysosomal Toll-like receptors (TLRs) play crucial roles in immune responses to pathogens, while aberrant activation of these pathways is associated with autoimmune diseases, including systemic lupus erythematosus (SLE). The endolysosomal solute carrier family 15 member 4 (SLC15A4) is required for TLR7/8/9-induced responses and disease development in SLE models. SLC15A4 has been proposed to affect TLR7-9 activation through its transport activity, as well as by assembling an IRF5-activating complex with TASL, but the relative contribution of these functions remains unclear. Here, we show that the essential role of SLC15A4 is to recruit TASL to endolysosomes, while its transport activity is dispensable when TASL is tethered to this compartment. Endolysosomal-localized TASL rescues TLR7-9-induced IRF5 activation as well as interferon ß and cytokine production in SLC15A4-deficient cells. SLC15A4 acts as signaling scaffold, and this function is essential to control TLR7-9-mediated inflammatory responses. These findings support targeting the SLC15A4-TASL complex as a potential therapeutic strategy for SLE and related diseases.


Asunto(s)
Lupus Eritematoso Sistémico , Receptor Toll-Like 7 , Humanos , Receptor Toll-Like 7/metabolismo , Receptores Toll-Like/metabolismo , Factores Reguladores del Interferón/metabolismo , Inmunidad Innata , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Membrana/metabolismo
2.
Elife ; 122023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705564

RESUMEN

Regulatory T cells (Tregs) are indispensable for maintaining self-tolerance by suppressing conventional T cells. On the other hand, Tregs promote tumor growth by inhibiting anticancer immunity. In this study, we identified that Tregs increase the quorum of self-reactive CD8+ T cells required for the induction of experimental autoimmune diabetes in mice. Their major suppression mechanism is limiting available IL-2, an essential T-cell cytokine. Specifically, Tregs inhibit the formation of a previously uncharacterized subset of antigen-stimulated KLRK1+ IL-7R+ (KILR) CD8+ effector T cells, which are distinct from conventional effector CD8+ T cells. KILR CD8+ T cells show superior cell-killing abilities in vivo. The administration of agonistic IL-2 immunocomplexes phenocopies the absence of Tregs, i.e., it induces KILR CD8+ T cells, promotes autoimmunity, and enhances antitumor responses in mice. Counterparts of KILR CD8+ T cells were found in the human blood, revealing them as a potential target for immunotherapy.


As well as protecting us from invading pathogens, like bacteria or viruses, our immune system can also identify dangerous cells of our own that may cause the body harm, such as cancer cells. Once detected, a population of immune cells called cytotoxic T cells launch into action to kill the potentially harmful cell. However, sometimes the immune system makes mistakes and attacks healthy cells which it misidentifies as being dangerous, leading to autoimmune diseases. Special immune cells called T regulatory lymphocytes, or 'Tregs', can suppress the activity of cytotoxic T cells, preventing them from hurting the body's own cells. While this can have a positive impact and reduce the effects of autoimmunity, Tregs can also make the immune system less responsive to cancer cells and allow tumors to grow. But how Tregs alter the behavior of cytotoxic T cells during autoimmune diseases and cancer is poorly understood. While multiple mechanisms have been proposed, none of these have been tested in living animal models of these diseases. To address this, Tsyklauri et al. studied Tregs in laboratory mice which had been modified to have autoimmune diabetes, which is when the body attacks the cells responsible for producing insulin. The experiments revealed that Tregs take up a critical signaling molecule called IL-2 which cytotoxic T cells need to survive and multiply. As a result, there is less IL-2 molecules available in the environment, inhibiting the cytotoxic T cells' activity. Furthermore, if Tregs are absent and there is an excess of IL-2, this causes cytotoxic T cells to transition into a previously unknown subset of T cells with superior killing abilities. Tsyklauri et al. were able to replicate these findings in two different groups of laboratory mice which had been modified to have cancer. This suggests that Tregs suppress the immune response to cancer cells and prevent autoimmunity using the same mechanism. In the future, this work could help researchers to develop therapies that alter the behavior of cytotoxic T cells and/or Tregs to either counteract autoimmune diseases, or help the body fight off cancer.


Asunto(s)
Diabetes Mellitus Tipo 1 , Linfocitos T Reguladores , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1/patología , Tolerancia Inmunológica , Interleucina-2 , Subfamilia K de Receptores Similares a Lectina de Células NK , Receptores de Interleucina-7
3.
Nat Immunol ; 24(1): 174-185, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564464

RESUMEN

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Linfocitos T Citotóxicos , Ratones , Animales , Linfocitos T Citotóxicos/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Antígenos CD4 , Transducción de Señal , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos CD8/metabolismo
4.
Front Immunol ; 13: 1009198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275704

RESUMEN

Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.


Asunto(s)
Linfocitos T CD8-positivos , Interferón Tipo I , Ratones , Animales , Timo , Células Clonales , Autoantígenos
5.
Nat Immunol ; 23(11): 1644-1652, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271145

RESUMEN

Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.


Asunto(s)
Artritis Psoriásica , Encefalomielitis Autoinmune Experimental , Psoriasis , Humanos , Ratones , Animales , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Proteínas con Dominio MARVEL/genética
6.
J Immunol ; 206(9): 2109-2121, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33858960

RESUMEN

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.


Asunto(s)
Envejecimiento/genética , Antígenos/genética , Memoria Inmunológica/genética , Linfocitos T/inmunología , Envejecimiento/inmunología , Animales , Antígenos/inmunología , Evolución Clonal , Inestabilidad Genómica , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
7.
EMBO Rep ; 22(2): e50785, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33426789

RESUMEN

Bardet-Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBS-induced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Bardet-Biedl , Hematopoyesis , Animales , Síndrome de Bardet-Biedl/complicaciones , Síndrome de Bardet-Biedl/genética , Cilios , Modelos Animales de Enfermedad , Hematopoyesis/genética , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación
8.
EMBO J ; 39(17): e104202, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32696476

RESUMEN

IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.


Asunto(s)
Retroalimentación Fisiológica , Receptores de Interleucina-17/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Interleucina-17/genética
9.
Cell Rep ; 30(5): 1504-1514.e7, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023465

RESUMEN

Overtly self-reactive T cells are removed during thymic selection. However, it has been recently established that T cell self-reactivity promotes protective immune responses. Apparently, the level of self-reactivity of mature T cells must be tightly balanced. Our mathematical model and experimental data show that the dynamic regulation of CD4- and CD8-LCK coupling establish the self-reactivity of the peripheral T cell pool. The stoichiometry of the interaction between CD8 and LCK, but not between CD4 and LCK, substantially increases upon T cell maturation. As a result, peripheral CD8+ T cells are more self-reactive than CD4+ T cells. The different levels of self-reactivity of mature CD8+ and CD4+ T cells likely reflect the unique roles of these subsets in immunity. These results indicate that the evolutionary selection pressure tuned the CD4-LCK and CD8-LCK stoichiometries, as they represent the unique parts of the proximal T cell receptor (TCR) signaling pathway, which differ between CD4+ and CD8+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Animales , Antígenos/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Diferenciación Celular , Homeostasis , Ratones Endogámicos C57BL , Unión Proteica , Transducción de Señal
10.
J Immunol ; 204(6): 1607-1620, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32024700

RESUMEN

Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1ß by neutrophil granulocytes. In this study, we show that in addition to IL-1ß, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1ß levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/patología , Proteínas del Citoesqueleto/metabolismo , NADPH Oxidasa 2/metabolismo , Osteomielitis/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Huesos/inmunología , Línea Celular , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Humanos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Ratones , Ratones Transgénicos , Mutación , NADPH Oxidasa 2/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Osteomielitis/genética , Osteomielitis/patología , Cultivo Primario de Células , Transducción de Señal/genética , Transducción de Señal/inmunología , Superóxidos/inmunología , Superóxidos/metabolismo
11.
J Cell Mol Med ; 24(2): 1980-1992, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31845480

RESUMEN

WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6-RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non-haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4-family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l-deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hematopoyesis , Proteínas de la Membrana/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Animales , Células Germinativas/metabolismo , Glicoproteínas/metabolismo , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Humanos , Lipoilación , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Unión Proteica , ARN Interferente Pequeño/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29752423

RESUMEN

Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T/análisis , Animales , Homeostasis , Ratones
13.
PLoS One ; 11(9): e0162863, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27657535

RESUMEN

Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling.

14.
Eur J Immunol ; 46(8): 1887-901, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27188212

RESUMEN

Mature CD8(+) T cells use a narrow antigen affinity threshold to generate tissue-infiltrating cytotoxic effector T cells and induce autoimmune pathology, but the mechanisms that establish this antigen affinity threshold are poorly understood. Only antigens with affinities above the threshold induce stable contacts with APCs, polarization of a T cell, and asymmetric T-cell division. Previously published data indicate that LFA-1 inside-out signaling might be involved in establishing the antigen affinity threshold. Here, we show that subthreshold antigens weakly activate all major distal TCR signaling pathways. Low-affinity antigens are more dependent on LFA-1 than suprathreshold antigens. Moreover, augmenting the inside-out signaling by hyperactive Rap1 does not increase responses to the subthreshold antigens. Thus, LFA-1 signaling does not contribute to the affinity-based antigen discrimination. However, we found that subthreshold antigens do not induce actin rearrangement toward an APC, mediated by Rho-family GTPases, Cdc42, and Rac. Our data suggest that Rac and Cdc42 contribute to the establishment of the antigen affinity threshold in CD8(+) T cells by enhancing responses to high-affinity antigens, or by reducing the responses to low-affinity antigens.


Asunto(s)
Actinas/metabolismo , Linfocitos T CD8-positivos/inmunología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Animales , Adhesión Celular , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
15.
J Immunol ; 195(7): 3416-26, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26304991

RESUMEN

Mutations in the adaptor protein PSTPIP2 are the cause of the autoinflammatory disease chronic multifocal osteomyelitis in mice. This disease closely resembles the human disorder chronic recurrent multifocal osteomyelitis, characterized by sterile inflammation of the bones and often associated with inflammation in other organs, such as the skin. The most critical process in the disease's development is the enhanced production of IL-1ß. This excessive IL-1ß is likely produced by neutrophils. In addition, the increased activity of macrophages, osteoclasts, and megakaryocytes has also been described. However, the molecular mechanism of how PSTPIP2 deficiency results in this phenotype is poorly understood. Part of the PSTPIP2 inhibitory function is mediated by protein tyrosine phosphatases from the proline-, glutamic acid-, serine- and threonine-rich (PEST) family, which are known to interact with the central part of this protein, but other regions of PSTPIP2 not required for PEST-family phosphatase binding were also shown to be indispensable for PSTPIP2 function. In this article, we show that PSTPIP2 binds the inhibitory enzymes Csk and SHIP1. The interaction with SHIP1 is of particular importance because it binds to the critical tyrosine residues at the C terminus of PSTPIP2, which is known to be crucial for its PEST-phosphatase-independent inhibitory effects in different cellular systems. We demonstrate that in neutrophils this region is important for the PSTPIP2-mediated suppression of IL-1ß processing and that SHIP1 inhibition results in the enhancement of this processing. We also describe deregulated neutrophil response to multiple activators, including silica, Ab aggregates, and LPS, which is suggestive of a rather generalized hypersensitivity of these cells to various external stimulants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas del Citoesqueleto/inmunología , Osteomielitis/inmunología , Monoéster Fosfórico Hidrolasas/inmunología , Familia-src Quinasas/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Tirosina Quinasa CSK , Línea Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Inflamación/inmunología , Inositol Polifosfato 5-Fosfatasas , Interleucina-1beta/biosíntesis , Macrófagos/inmunología , Megacariocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Neutrófilos/inmunología , Osteoclastos/inmunología , Osteomielitis/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Unión Proteica , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/inmunología
16.
J Immunol ; 190(4): 1807-18, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23335753

RESUMEN

When a BCR on a mature B cell is engaged by its ligand, the cell becomes activated, and the Ab-mediated immune response can be triggered. The initiation of BCR signaling is orchestrated by kinases of the Src and Syk families. However, the proximal BCR-induced phosphorylation remains incompletely understood. According to a model of sequential activation of kinases, Syk acts downstream of Src family kinases (SFKs). In addition, signaling independent of SFKs and initiated by Syk has been proposed. Both hypotheses lack sufficient evidence from relevant B cell models, mainly because of the redundancy of Src family members and the importance of BCR signaling for B cell development. We addressed this issue by analyzing controlled BCR triggering ex vivo on primary murine B cells and on murine and chicken B cell lines. Chemical and Csk-based genetic inhibitor treatments revealed that SFKs are required for signal initiation and Syk activation. In addition, ligand and anti-BCR Ab-induced signaling differ in their sensitivity to the inhibition of SFKs.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Tirosina Quinasas/fisiología , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/inmunología , Familia-src Quinasas/fisiología , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Pollos , Activación Enzimática/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Receptores de Células Precursoras de Linfocitos B/metabolismo , Receptores de Células Precursoras de Linfocitos B/fisiología , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/fisiología , Quinasa Syk , Familia-src Quinasas/metabolismo
17.
J Biol Chem ; 287(27): 22812-21, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22589543

RESUMEN

Transmembrane adaptor proteins are membrane-anchored proteins consisting of a short extracellular part, a transmembrane domain, and a cytoplasmic part with various protein-protein interaction motifs but lacking any enzymatic activity. They participate in the regulation of various signaling pathways by recruiting other proteins to the proximity of cellular membranes where the signaling is often initiated and propagated. In this work, we show that LST1/A, an incompletely characterized protein encoded by MHCIII locus, is a palmitoylated transmembrane adaptor protein. It is expressed specifically in leukocytes of the myeloid lineage, where it localizes to the tetraspanin-enriched microdomains. In addition, it binds SHP-1 and SHP-2 phosphatases in a phosphotyrosine-dependent manner, facilitating their recruitment to the plasma membrane. These data suggest a role for LST1/A in negative regulation of signal propagation.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Células Mieloides/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células Jurkat , Complejo Mayor de Histocompatibilidad/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Células Mieloides/citología , Plaquinas/metabolismo , Cultivo Primario de Células , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Seudópodos/metabolismo , Transducción de Señal/fisiología , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...