Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2180, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846299

RESUMEN

The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms.


Asunto(s)
Chaperonas Moleculares/metabolismo , Especificidad de Órganos , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Línea Celular , Secuencia Conservada , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Ratones , Chaperonas Moleculares/genética , Sistemas de Lectura Abierta/genética , Especificidad de Órganos/genética
2.
J Vis Exp ; (160)2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568253

RESUMEN

Correct folding and assembly of proteins and protein complexes are essential for cellular function. Cells employ quality control pathways that correct, sequester or eliminate damaged proteins to maintain a healthy proteome, thus ensuring cellular proteostasis and preventing further protein damage. Because of redundant functions within the proteostasis network, screening for detectable phenotypes using knockdown or mutations in chaperone-encoding genes in the multicellular organism Caenorhabditis elegans results in the detection of minor or no phenotypes in most cases. We have developed a targeted screening strategy to identify chaperones required for a specific function and thus bridge the gap between phenotype and function. Specifically, we monitor novel chaperone interactions using RNAi synthetic interaction screens, knocking-down chaperone expression, one chaperone at a time, in animals carrying a mutation in a chaperone-encoding gene or over-expressing a chaperone of interest. By disrupting two chaperones that individually present no gross phenotype, we can identify chaperones that aggravate or expose a specific phenotype when both perturbed. We demonstrate that this approach can identify specific sets of chaperones that function together to modulate the folding of a protein or protein complexes associated with a given phenotype.


Asunto(s)
Caenorhabditis elegans/metabolismo , Tamizaje Masivo , Chaperonas Moleculares/metabolismo , Especificidad de Órganos , Animales , Bioensayo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Epistasis Genética , Mitocondrias/metabolismo , Óvulo/metabolismo , Fenotipo , Unión Proteica , Pliegue de Proteína , Proteoma/metabolismo , Interferencia de ARN , Reproducibilidad de los Resultados
3.
PLoS Genet ; 12(12): e1006531, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28036392

RESUMEN

Safeguarding the proteome is central to the health of the cell. In multi-cellular organisms, the composition of the proteome, and by extension, protein-folding requirements, varies between cells. In agreement, chaperone network composition differs between tissues. Here, we ask how chaperone expression is regulated in a cell type-specific manner and whether cellular differentiation affects chaperone expression. Our bioinformatics analyses show that the myogenic transcription factor HLH-1 (MyoD) can bind to the promoters of chaperone genes expressed or required for the folding of muscle proteins. To test this experimentally, we employed HLH-1 myogenic potential to genetically modulate cellular differentiation of Caenorhabditis elegans embryonic cells by ectopically expressing HLH-1 in all cells of the embryo and monitoring chaperone expression. We found that HLH-1-dependent myogenic conversion specifically induced the expression of putative HLH-1-regulated chaperones in differentiating muscle cells. Moreover, disrupting the putative HLH-1-binding sites on ubiquitously expressed daf-21(Hsp90) and muscle-enriched hsp-12.2(sHsp) promoters abolished their myogenic-dependent expression. Disrupting HLH-1 function in muscle cells reduced the expression of putative HLH-1-regulated chaperones and compromised muscle proteostasis during and after embryogenesis. In turn, we found that modulating the expression of muscle chaperones disrupted the folding and assembly of muscle proteins and thus, myogenesis. Moreover, muscle-specific over-expression of the DNAJB6 homolog DNJ-24, a limb-girdle muscular dystrophy-associated chaperone, disrupted the muscle chaperone network and exposed synthetic motility defects. We propose that cellular differentiation could establish a proteostasis network dedicated to the folding and maintenance of the muscle proteome. Such cell-specific proteostasis networks can explain the selective vulnerability that many diseases of protein misfolding exhibit even when the misfolded protein is ubiquitously expressed.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Factores Reguladores Miogénicos/genética , Animales , Sitios de Unión , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/biosíntesis , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Proteínas Musculares , Factores Reguladores Miogénicos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Regiones Promotoras Genéticas , Factores de Transcripción
4.
Front Mol Biosci ; 1: 21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25988162

RESUMEN

Proteome stability is central to cellular function and the lifespan of an organism. This is apparent in muscle cells, where incorrect folding and assembly of the sarcomere contributes to disease and aging. Apart from the myosin-assembly factor UNC-45, the complete network of chaperones involved in assembly and maintenance of muscle tissue is currently unknown. To identify additional factors required for sarcomere quality control, we performed genetic screens based on suppressed or synthetic motility defects in Caenorhabditis elegans. In addition to ethyl methyl sulfonate-based mutagenesis, we employed RNAi-mediated knockdown of candidate chaperones in unc-45 temperature-sensitive mutants and screened for impaired movement at permissive conditions. This approach confirmed the cooperation between UNC-45 and Hsp90. Moreover, the screens identified three novel co-chaperones, CeHop (STI-1), CeAha1 (C01G10.8) and Cep23 (ZC395.10), required for muscle integrity. The specific identification of Hsp90 and Hsp90 co-chaperones highlights the physiological role of Hsp90 in myosin folding. Our work thus provides a clear example of how a combination of mild perturbations to the proteostasis network can uncover specific quality control modules.

5.
J Vis Exp ; (82): e50840, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24378578

RESUMEN

The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Modelos Animales , Factores de Edad , Animales , Homeostasis , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA