Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 19(1): 83, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563651

RESUMEN

BACKGROUND: Tar spot of corn is a significant and spreading disease in the continental U.S. and Canada caused by the obligate biotrophic fungus Phyllachora maydis. As of 2023, tar spot had been reported in 18 U.S. states and one Canadian Province. The symptoms of tar spot include chlorotic flecking followed by the formation of black stromata where conidia and ascospores are produced. Advancements in research and management for tar spot have been limited by a need for a reliable method to inoculate plants to enable the study of the disease. The goal of this study was to develop a reliable method to induce tar spot in controlled conditions. RESULTS: We induced infection of corn by P. maydis in 100% of inoculated plants with a new inoculation method. This method includes the use of vacuum-collection tools to extract ascospores from field-infected corn leaves, application of spores to leaves, and induction of the disease in the dark at high humidity and moderate temperatures. Infection and disease development were consistently achieved in four independent experiments on different corn hybrids and under different environmental conditions in a greenhouse and growth chamber. Disease induction was impacted by the source and storage conditions of spores, as tar spot was not induced with ascospores from leaves stored dry at 25 ºC for 5 months but was induced using ascospores from infected leaves stored at -20 ºC for 5 months. The time from inoculation to stromata formation was 10 to 12 days and ascospores were present 19 days after inoculation throughout our experiments. In addition to providing techniques that enable in-vitro experimentation, our research also provides fundamental insights into the conditions that favor tar spot epidemics. CONCLUSIONS: We developed a method to reliably inoculate corn with P. maydis. The method was validated by multiple independent experiments in which infection was induced in 100% of the plants, demonstrating its consistency in controlled conditions. This new method facilitates research on tar spot and provides opportunities to study the biology of P. maydis, the epidemiology of tar spot, and for identifying host resistance.

2.
Nucleic Acids Res ; 51(14): 7220-7235, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427794

RESUMEN

The products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We amalgamated a pipeline of tools to predict BGCs based on shared promoter motifs and located 3800 ICS BGCs in 3300 genomes, making ICS BGCs the fifth largest class of specialized metabolites compared to canonical classes found by antiSMASH. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICS dit1/2 gene cluster family (GCF), which was prior only studied in yeast, is present in ∼30% of all Ascomycetes. The dit variety ICS exhibits greater similarity to bacterial ICS than other fungal ICS, suggesting a potential convergence of the ICS backbone domain. The evolutionary origins of the dit GCF in Ascomycota are ancient and these genes are diversifying in some lineages. Our results create a roadmap for future research into ICS BGCs. We developed a website (https://isocyanides.fungi.wisc.edu/) that facilitates the exploration and downloading of all identified fungal ICS BGCs and GCFs.


Asunto(s)
Productos Biológicos , Biología Computacional , Hongos , Bacterias/genética , Vías Biosintéticas , Biología Computacional/métodos , Cianuros , Familia de Multigenes , Hongos/química
3.
Microbiol Spectr ; 11(4): e0433922, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358460

RESUMEN

Aspergillus flavus is a mycotoxigenic fungus that contaminates many important agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound. This fungus is also the second leading cause of human invasive aspergillosis, after Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised individuals. Azole drugs are considered the most effective compounds in controlling Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance in Aspergillus spp. is typically associated with point mutations in cyp51 orthologs that encode lanosterol 14α-demethylase, a component of the ergosterol biosynthesis pathway that is also the target of azoles. We hypothesized that alternative molecular mechanisms are also responsible for acquisition of azole resistance in filamentous fungi. We found that an aflatoxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC through whole or segmental aneuploidy of specific chromosomes. We confirm a complete duplication of chromosome 8 in two sequentially isolated clones and a segmental duplication of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was evidenced by the ability of voriconazole-resistant clones to revert to their original level of azole susceptibility following repeated transfers on drug-free media. This study provides new insights into mechanisms of azole resistance in a filamentous fungus. IMPORTANCE Fungal pathogens cause human disease and threaten global food security by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with high rates of mortality in immunocompromised individuals. Additionally, this fungus contaminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the drug of choice to treat infections caused by Aspergillus spp. Although azole resistance mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneuploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents a paradigm shift, as this type of resistance was previously thought to occur only in yeasts. This observation provides the first experimental evidence of aneuploidy-mediated azole resistance in the filamentous fungus A. flavus.


Asunto(s)
Aneuploidia , Antifúngicos , Aspergillus flavus , Farmacorresistencia Fúngica , Voriconazol , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/genética , Voriconazol/farmacología , Dosificación de Gen , Cromosomas Fúngicos , Antifúngicos/farmacología
4.
mBio ; 14(3): e0076923, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37162223

RESUMEN

Potent antimicrobial metabolites are produced by filamentous fungi in pure culture, but their ecological functions in nature are often unknown. Using an antibacterial Penicillium isolate and a cheese rind microbial community, we demonstrate that a fungal specialized metabolite can regulate the diversity of bacterial communities. Inactivation of the global regulator, LaeA, resulted in the loss of antibacterial activity in the Penicillium isolate. Cheese rind bacterial communities assembled with the laeA deletion strain had significantly higher bacterial abundances than the wild-type strain. RNA-sequencing and metabolite profiling demonstrated a striking reduction in the expression and production of the natural product pseurotin in the laeA deletion strain. Inactivation of a core gene in the pseurotin biosynthetic cluster restored bacterial community composition, confirming the role of pseurotins in mediating bacterial community assembly. Our discovery demonstrates how global regulators of fungal transcription can control the assembly of bacterial communities and highlights an ecological role for a widespread class of fungal specialized metabolites. IMPORTANCE Cheese rinds are economically important microbial communities where fungi can impact food quality and aesthetics. The specific mechanisms by which fungi can regulate bacterial community assembly in cheeses, other fermented foods, and microbiomes in general are largely unknown. Our study highlights how specialized metabolites secreted by a Penicillium species can mediate cheese rind development via differential inhibition of bacterial community members. Because LaeA regulates specialized metabolites and other ecologically relevant traits in a wide range of filamentous fungi, this global regulator may have similar impacts in other fungus-dominated microbiomes.


Asunto(s)
Hongos , Penicillium , Hongos/genética , Hongos/metabolismo , Bacterias/genética , Penicillium/genética , Penicillium/metabolismo , Secuencia de Bases , Antibacterianos/farmacología , Antibacterianos/metabolismo
5.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131656

RESUMEN

The products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) have notable bioactivities that mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We developed the first genome-mining pipeline to identify ICS BGCs, locating 3,800 ICS BGCs in 3,300 genomes. Genes in these clusters share promoter motifs and are maintained in contiguous groupings by natural selection. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICS dit1 / 2 gene cluster family (GCF), which was thought to only exist in yeast, is present in ∻30% of all Ascomycetes, including many filamentous fungi. The evolutionary history of the dit GCF is marked by deep divergences and phylogenetic incompatibilities that raise questions about convergent evolution and suggest selection or horizontal gene transfers have shaped the evolution of this cluster in some yeast and dimorphic fungi. Our results create a roadmap for future research into ICS BGCs. We developed a website ( www.isocyanides.fungi.wisc.edu ) that facilitates the exploration, filtering, and downloading of all identified fungal ICS BGCs and GCFs.

6.
ISME J ; 17(8): 1236-1246, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37221394

RESUMEN

The poisonous European mushroom Amanita phalloides (the "death cap") is invading California. Whether the death caps' toxic secondary metabolites are evolving as it invades is unknown. We developed a bioinformatic pipeline to identify the MSDIN genes underpinning toxicity and probed 88 death cap genomes from an invasive Californian population and from the European range, discovering a previously unsuspected diversity of MSDINs made up of both core and accessory elements. Each death cap individual possesses a unique suite of MSDINs, and toxin genes are significantly differentiated between Californian and European samples. MSDIN genes are maintained by strong natural selection, and chemical profiling confirms MSDIN genes are expressed and result in distinct phenotypes; our chemical profiling also identified a new MSDIN peptide. Toxin genes are physically clustered within genomes. We contextualize our discoveries by probing for MSDINs in genomes from across the order Agaricales, revealing MSDIN diversity originated in independent gene family expansions among genera. We also report the discovery of an MSDIN in an Amanita outside the "lethal Amanitas" clade. Finally, the identification of an MSDIN gene and its associated processing gene (POPB) in Clavaria fumosa suggest the origin of MSDINs is older than previously suspected. The dynamic evolution of MSDINs underscores their potential to mediate ecological interactions, implicating MSDINs in the ongoing invasion. Our data change the understanding of the evolutionary history of poisonous mushrooms, emphasizing striking parallels to convergently evolved animal toxins. Our pipeline provides a roadmap for exploring secondary metabolites in other basidiomycetes and will enable drug prospecting.


Asunto(s)
Agaricales , Amanita , Amanita/genética , Agaricales/genética , Biología Computacional
7.
mSystems ; 7(6): e0105222, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36453934

RESUMEN

Lipo-chitooligosaccharides (LCOs) are historically known for their role as microbial-derived signaling molecules that shape plant symbiosis with beneficial rhizobia or mycorrhizal fungi. Recent studies showing that LCOs are widespread across the fungal kingdom have raised questions about the ecological function of these compounds in organisms that do not form symbiotic relationships with plants. To elucidate the ecological function of these compounds, we investigate the metabolomic response of the ubiquitous human pathogen Aspergillus fumigatus to LCOs. Our metabolomics data revealed that exogenous application of various types of LCOs to A. fumigatus resulted in significant shifts in the fungal metabolic profile, with marked changes in the production of specialized metabolites known to mediate ecological interactions. Using network analyses, we identify specific types of LCOs with the most significant effect on the abundance of known metabolites. Extracts of several LCO-induced metabolic profiles significantly impact the growth rates of diverse bacterial species. These findings suggest that LCOs may play an important role in the competitive dynamics of non-plant-symbiotic fungi and bacteria. This study identifies specific metabolomic profiles induced by these ubiquitously produced chemicals and creates a foundation for future studies into the potential roles of LCOs as modulators of interkingdom competition. IMPORTANCE The activation of silent biosynthetic gene clusters (BGC) for the identification and characterization of novel fungal secondary metabolites is a perpetual motion in natural product discoveries. Here, we demonstrated that one of the best-studied symbiosis signaling compounds, lipo-chitooligosaccharides (LCOs), play a role in activating some of these BGCs, resulting in the production of known, putative, and unknown metabolites with biological activities. This collection of metabolites induced by LCOs differentially modulate bacterial growth, while the LCO standards do not convey the same effect. These findings create a paradigm shift showing that LCOs have a more prominent role outside of host recognition of symbiotic microbes. Importantly, our work demonstrates that fungi use LCOs to produce a variety of metabolites with biological activity, which can be a potential source of bio-stimulants, pesticides, or pharmaceuticals.


Asunto(s)
Quitosano , Micorrizas , Humanos , Quitina , Quitosano/farmacología , Oligosacáridos/farmacología
8.
Phytopathology ; 112(10): 2044-2051, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35502928

RESUMEN

For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).


Asunto(s)
Aflatoxinas , Alcaloides de Claviceps , Micotoxinas , Tricotecenos , Ecosistema , Femenino , Hongos , Humanos , Masculino , Micotoxinas/toxicidad , Enfermedades de las Plantas , Factores de Virulencia
9.
Curr Biol ; 32(7): 1523-1533.e6, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35235767

RESUMEN

Fungi and bacteria are ubiquitous constituents of all microbiomes, yet mechanisms of microbial persistence in polymicrobial communities remain obscure. Here, we examined the hypothesis that specialized fungal survival structures, chlamydospores, induced by bacterial lipopeptides serve as bacterial reservoirs. We find that symbiotic and pathogenic gram-negative bacteria from non-endosymbiotic taxa enter and propagate in chlamydospores. Internalized bacteria have higher fitness than planktonic bacteria when challenged with abiotic stress. Further, tri-cultures of Ralstonia solanacearum, Pseudomonas aeruginosa, and Aspergillus flavus reveal the unprecedented finding that chlamydospores are colonized by endofungal bacterial communities. Our work identifies a previously unknown ecological role of chlamydospores, provides an expanded view of microbial niches, and presents significant implications for the persistence of pathogenic and beneficial bacteria.


Asunto(s)
Microbiota , Ralstonia solanacearum , Bacterias , Hongos , Vivienda , Simbiosis
10.
J Fungi (Basel) ; 8(2)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35205911

RESUMEN

In studying the development of tolerance to common hospital cleaners (Oxivir® and CaviCide™) in clinical isolate stocks of the emerging, multidrug-resistant yeast pathogen Candida auris, we selected for a cleaner-tolerant subpopulation of a more common nosocomial pathogen, Candida glabrata. Through the purification of each species and subsequent competition and other analyses, we determined that C. glabrata is capable of readily dominating mixed populations of C. auris and C. glabrata when exposed to hospital cleaners. This result suggests that exposure to antimicrobial compounds can preferentially select for low-level, stress-tolerant fungal pathogens. These findings indicate that clinical disinfection practices could contribute to the selection of tolerant, pathogenic microbes that persist within healthcare settings.

11.
Elife ; 102021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34647888

RESUMEN

The fungus Aspergillus nidulans produces secondary metabolites during sexual development to protect itself from predators.


Asunto(s)
Aspergillus nidulans , Regulación Fúngica de la Expresión Génica , Aspergillus nidulans/genética , Desarrollo Sexual
12.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941694

RESUMEN

Fungi are prolific producers of natural products, compounds which have had a large societal impact as pharmaceuticals, mycotoxins, and agrochemicals. Despite the availability of over 1,000 fungal genomes and several decades of compound discovery efforts from fungi, the biosynthetic gene clusters (BGCs) encoded by these genomes and the associated chemical space have yet to be analyzed systematically. Here, we provide detailed annotation and analyses of fungal biosynthetic and chemical space to enable genome mining and discovery of fungal natural products. Using 1,037 genomes from species across the fungal kingdom (e.g., Ascomycota, Basidiomycota, and non-Dikarya taxa), 36,399 predicted BGCs were organized into a network of 12,067 gene cluster families (GCFs). Anchoring these GCFs with reference BGCs enabled automated annotation of 2,026 BGCs with predicted metabolite scaffolds. We performed parallel analyses of the chemical repertoire of fungi, organizing 15,213 fungal compounds into 2,945 molecular families (MFs). The taxonomic landscape of fungal GCFs is largely species specific, though select families such as the equisetin GCF are present across vast phylogenetic distances with parallel diversifications in the GCF and MF. We compare these fungal datasets with a set of 5,453 bacterial genomes and their BGCs and 9,382 bacterial compounds, revealing dramatic differences between bacterial and fungal biosynthetic logic and chemical space. These genomics and cheminformatics analyses reveal the large extent to which fungal and bacterial sources represent distinct compound reservoirs. With a >10-fold increase in the number of interpreted strains and annotated BGCs, this work better regularizes the biosynthetic potential of fungi for rational compound discovery.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Genoma Fúngico , Familia de Multigenes , Bacterias/genética , Bacterias/metabolismo , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Genes Fúngicos , Genómica , Filogenia , Metabolismo Secundario , Especificidad de la Especie
13.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34016748

RESUMEN

Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.


Asunto(s)
Aspergillus flavus/metabolismo , Aspergillus/metabolismo , Genoma Fúngico , Metaboloma , Metabolismo Secundario/genética , Aspergillus/clasificación , Aspergillus/genética , Aspergillus flavus/clasificación , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Especiación Genética , Genómica , Metagenómica , Familia de Multigenes , Filogenia , Estados Unidos
14.
mBio ; 11(4)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665272

RESUMEN

The apparent rarity of sex in many fungal species has raised questions about how much sex is needed to purge deleterious mutations and how differences in frequency of sex impact fungal evolution. We sought to determine how differences in the extent of recombination between populations of Aspergillus flavus impact the evolution of genes associated with the synthesis of aflatoxin, a notoriously potent carcinogen. We sequenced the genomes of, and quantified aflatoxin production in, 94 isolates of A. flavus sampled from seven states in eastern and central latitudinal transects of the United States. The overall population is subdivided into three genetically differentiated populations (A, B, and C) that differ greatly in their extent of recombination, diversity, and aflatoxin-producing ability. Estimates of the number of recombination events and linkage disequilibrium decay suggest relatively frequent sex only in population A. Population B is sympatric with population A but produces significantly less aflatoxin and is the only population where the inability of nonaflatoxigenic isolates to produce aflatoxin was explained by multiple gene deletions. Population expansion evident in population B suggests a recent introduction or range expansion. Population C is largely nonaflatoxigenic and restricted mainly to northern sampling locations through restricted migration and/or selection. Despite differences in the number and type of mutations in the aflatoxin gene cluster, codon optimization and site frequency differences in synonymous and nonsynonymous mutations suggest that low levels of recombination in some A. flavus populations are sufficient to purge deleterious mutations.IMPORTANCE Differences in the relative frequencies of sexual and asexual reproduction have profound implications for the accumulation of deleterious mutations (Muller's ratchet), but little is known about how these differences impact the evolution of ecologically important phenotypes. Aspergillus flavus is the main producer of aflatoxin, a notoriously potent carcinogen that often contaminates food. We investigated if differences in the levels of production of aflatoxin by A. flavus could be explained by the accumulation of deleterious mutations due to a lack of recombination. Despite differences in the extent of recombination, variation in aflatoxin production is better explained by the demography and history of specific populations and may suggest important differences in the ecological roles of aflatoxin among populations. Furthermore, the association of aflatoxin production and populations provides a means of predicting the risk of aflatoxin contamination by determining the frequencies of isolates from low- and high-production populations.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Metagenómica , Recombinación Genética , Aspergillus flavus/clasificación , ADN de Hongos/genética , Variación Genética , Desequilibrio de Ligamiento , Familia de Multigenes , Mutación , Análisis de Secuencia de ADN
15.
mBio ; 10(1)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30782658

RESUMEN

Selective forces that maintain the polymorphism for aflatoxigenic and nonaflatoxigenic individuals of Aspergillus flavus are largely unknown. As soils are widely considered the natural habitat of A. flavus, we hypothesized that aflatoxin production would confer a fitness advantage in the soil environment. To test this hypothesis, we used A. flavus DNA quantified by quantitative PCR (qPCR) as a proxy for fitness of aflatoxigenic and nonaflatoxigenic field isolates grown in soil microcosms. Contrary to predictions, aflatoxigenic isolates had significantly lower fitness than did nonaflatoxigenic isolates in natural soils across three temperatures (25, 37, and 42°C). The addition of aflatoxin to soils (500 ng/g) had no effect on the growth of A. flavus Amplicon sequencing showed that neither the aflatoxin-producing ability of the fungus nor the addition of aflatoxin had a significant effect on the composition of fungal or bacterial communities in soil. We argue that the fitness disadvantage of aflatoxigenic isolates is most likely explained by the metabolic cost of producing aflatoxin. Coupled with a previous report of a selective advantage of aflatoxin production in the presence of some insects, our findings give an ecological explanation for balancing selection resulting in persistent polymorphisms in aflatoxin production.IMPORTANCE Aflatoxin, produced by the fungus Aspergillus flavus, is an extremely potent hepatotoxin that causes acute toxicosis and cancer, and it incurs hundreds of millions of dollars annually in agricultural losses. Despite the importance of this toxin to humans, it has remained unclear what the fungus gains by producing aflatoxin. In fact, not all strains of A. flavus produce aflatoxin. Previous work has shown an advantage to producing aflatoxin in the presence of some insects. Our current work demonstrates the first evidence of a disadvantage to A. flavus in producing aflatoxin when competing with soil microbes. Together, these opposing evolutionary forces could explain the persistence of both aflatoxigenic and nonaflatoxigenic strains through evolutionary time.


Asunto(s)
Aflatoxinas/metabolismo , Antibiosis , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Metabolismo Energético , Venenos/metabolismo , Microbiología del Suelo , Bacterias/crecimiento & desarrollo , ADN de Hongos/análisis , ADN de Hongos/genética , Aptitud Genética , Genética de Población , Reacción en Cadena en Tiempo Real de la Polimerasa , Temperatura
16.
Phytopathology ; 109(5): 878-886, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30480472

RESUMEN

Consumption of food contaminated with aflatoxin, from crops infected by Aspergillus flavus, is associated with acute toxicosis, cancer, and stunted growth. Although such contamination is more common in the lower latitudes of the United States, it is unclear whether this pattern is associated with differences in the relative frequencies of aflatoxigenic individuals of A. flavus. To determine whether the frequency of the aflatoxin-producing ability of A. flavus increases as latitude decreases, we sampled 281 isolates from field soils in two north-south transects in the United States and tested them for aflatoxin production. We also genotyped 161 isolates using 10 microsatellite markers to assess population structure. Although the population density of A. flavus was highest at lower latitudes, there was no difference in the frequency of aflatoxigenic A. flavus isolates in relation to latitude. We found that the U.S. population of A. flavus is subdivided into two genetically differentiated subpopulations that are not associated with the chemotype or geographic origin of the isolates. The two populations differ markedly in allelic and genotypic diversity. The less diverse population is more abundant and may represent a clonal lineage derived from the more diverse population. Overall, increased aflatoxin contamination in lower latitudes may be explained partially by differences in the population density of A. flavus, not genetic population structure.


Asunto(s)
Aflatoxinas , Aspergillus flavus/genética , Genética de Población , Genotipo , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Estados Unidos
17.
Heredity (Edinb) ; 121(6): 511-523, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29426879

RESUMEN

Balancing selection has been inferred in diverse organisms for nonself recognition genes, including those involved in immunity, mating compatibility, and vegetative incompatibility. Although selective forces maintaining polymorphisms are known for genes involved in immunity and mating, mechanisms of balancing selection for vegetative incompatibility genes in fungi are being debated. We hypothesized that allorecognition and its consequent inhibition of virus transmission contribute to the maintenance of polymorphisms in vegetative incompatibility loci (vic) in the chestnut blight fungus, Cryphonectria parasitica. Balancing selection was demonstrated at two loci, vic2 and vic6, by trans-species polymorphisms in C. parasitica, C. radicalis, and C. japonica and signatures of positive selection in gene sequences. In addition, more than half (31 of 54) of allele frequency estimates at six vic loci in nine field populations of C. parasitica from Asia and the eastern US were not significantly different from 0.5, as expected at equilibrium for two alleles per locus under balancing selection. At three vic loci, deviations from 0.5 were predicted based on the effects of heteroallelism on virus transmission. Twenty-five of 27 allele frequency estimates were greater than or equal to 0.5 for the allele that confers significantly stronger inhibition of virus transmission at three loci with asymmetric transmission. These results are consistent with the allorecognition hypothesis that vegetative incompatibility genes are under selection because of their role in reducing infection by viruses.


Asunto(s)
Frecuencia de los Genes , Polimorfismo Genético , Saccharomycetales/genética , Selección Genética , Saccharomycetales/clasificación , Especificidad de la Especie
18.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263278

RESUMEN

The role of microbial secondary metabolites in the ecology of the organisms that produce them remains poorly understood. Variation in aflatoxin production by Aspergillus flavus is maintained by balancing selection, but the ecological function and impact on fungal fitness of this compound are unknown. We hypothesize that balancing selection for aflatoxin production in A. flavus is driven by interaction with insects. To test this, we competed naturally occurring aflatoxigenic and non-aflatoxigenic fungal isolates against Drosophila larvae on medium containing 0-1750 ppb aflatoxin, using quantitative PCR to quantify A. flavus DNA as a proxy for fungal fitness. The addition of aflatoxin across this range resulted in a 26-fold increase in fungal fitness. With no added toxin, aflatoxigenic isolates caused higher mortality of Drosophila larvae and had slightly higher fitness than non-aflatoxigenic isolates. Additionally, aflatoxin production increased an average of 1.5-fold in the presence of a single larva and nearly threefold when the fungus was mechanically damaged. We argue that the role of aflatoxin in protection from fungivory is inextricably linked to its role in interference competition. Our results, to our knowledge, provide the first clear evidence of a fitness advantage conferred to A. flavus by aflatoxin when interacting with insects.


Asunto(s)
Aflatoxinas/metabolismo , Aspergillus flavus/química , Aspergillus flavus/genética , Drosophila melanogaster/fisiología , Herbivoria , Selección Genética , Animales , Drosophila melanogaster/crecimiento & desarrollo , Microbiología de Alimentos , Larva/crecimiento & desarrollo , Larva/fisiología
19.
Mol Ecol ; 24(5): 1135-49, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25683348

RESUMEN

The microbiome can significantly impact host phenotypes and serve as an additional source of heritable genetic variation. While patterns across eukaryotes are consistent with a role for symbiotic microbes in host macroevolution, few studies have examined symbiont-driven host evolution or the ecological implications of a dynamic microbiome across temporal, spatial or ecological scales. The pea aphid, Acyrthosiphon pisum, and its eight heritable bacterial endosymbionts have served as a model for studies on symbiosis and its potential contributions to host ecology and evolution. But we know little about the natural dynamics or ecological impacts of the heritable microbiome of this cosmopolitan insect pest. Here we report seasonal shifts in the frequencies of heritable defensive bacteria from natural pea aphid populations across two host races and geographic regions. Microbiome dynamics were consistent with symbiont responses to host-level selection and findings from one population suggested symbiont-driven adaptation to seasonally changing parasitoid pressures. Conversely, symbiont levels were negatively correlated with enemy-driven mortality when measured across host races, suggesting important ecological impacts of host race microbiome divergence. Rapid drops in symbiont frequencies following seasonal peaks suggest microbiome instability in several populations, with potentially large costs of 'superinfection' under certain environmental conditions. In summary, the realization of several laboratory-derived, a priori expectations suggests important natural impacts of defensive symbionts in host-enemy eco-evolutionary feedbacks. Yet negative findings and unanticipated correlations suggest complexities within this system may limit or obscure symbiont-driven contemporary evolution, a finding of broad significance given the widespread nature of defensive microbes across plants and animals.


Asunto(s)
Adaptación Biológica/genética , Áfidos/microbiología , Enterobacteriaceae/clasificación , Microbiota , Estaciones del Año , Animales , Enterobacteriaceae/genética , Repeticiones de Microsatélite , Datos de Secuencia Molecular , New England , Análisis de Secuencia de ADN , Simbiosis , Temperatura
20.
PLoS One ; 9(9): e106740, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181515

RESUMEN

Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.


Asunto(s)
Técnicas de Genotipaje , Recombinación Genética , Reproducción Asexuada , Análisis de Secuencia de ADN , Verticillium/genética , Verticillium/fisiología , Genes del Tipo Sexual de los Hongos/genética , Genómica , Meiosis/genética , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Ácido Nucleico , Verticillium/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...