Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Cell Reprogram ; 24(5): 212-222, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36219715

RESUMEN

Last June, the stem cell community came together to celebrate the 20th anniversary of the International Society for Stem Cell Research (ISSCR), one of the leading organizations in the field. The hybrid event mixed a varied program filled with plenary talks, concurrent track sessions, poster presentations, exhibit booths, and plenty of opportunities to enhance stem cell research through bonding between academia and industry. This report highlights the Plenary sessions, with the main topics discussed by each speaker. All the impressive research showcased during the meeting is genuine proof of the great advancements the field has witnessed during these last 20 years, and the more to come.


Asunto(s)
Investigación con Células Madre , Congresos como Asunto
3.
Stem Cell Reports ; 17(10): 2203-2219, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150382

RESUMEN

We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Adulto , Autofagia/fisiología , Neuronas Dopaminérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
4.
Cell Reprogram ; 24(4): 163-164, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35969675

RESUMEN

A major improvement in the generation of astrocytes directly from human fibroblasts will now facilitate the study of how aging impacts on astrocyte function and whether this contributes to neurodegenerative disorders.


Asunto(s)
Astrocitos , Fibroblastos , Envejecimiento , Humanos
5.
Cell Reprogram ; 24(5): 228-251, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749150

RESUMEN

Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Astrocitos , Diferenciación Celular , Reprogramación Celular , Humanos , Neuronas
6.
Brain ; 145(9): 3035-3057, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34936701

RESUMEN

Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Adulto , Autofagia/fisiología , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neuronas
7.
Cells ; 10(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943958

RESUMEN

Direct reprogramming is an appealing strategy to generate neurons from a somatic cell by forced expression of transcription factors. The generated neurons can be used for both cell replacement strategies and disease modelling. Using this technique, previous studies have shown that γ-aminobutyric acid (GABA) expressing interneurons can be generated from different cell sources, such as glia cells or fetal fibroblasts. Nevertheless, the generation of neurons from adult human fibroblasts, an easily accessible cell source to obtain patient-derived neurons, has proved to be challenging due to the intrinsic blockade of neuronal commitment. In this paper, we used an optimized protocol for adult skin fibroblast reprogramming based on RE1 Silencing Transcription Factor (REST) inhibition together with a combination of GABAergic fate determinants to convert human adult skin fibroblasts into GABAergic neurons. Our results show a successful conversion in 25 days with upregulation of neuronal gene and protein expression levels. Moreover, we identified specific gene combinations that converted fibroblasts into neurons of a GABAergic interneuronal fate. Despite the well-known difficulty in converting adult fibroblasts into functional neurons in vitro, we could detect functional maturation in the induced neurons. GABAergic interneurons have relevance for cognitive impairments and brain disorders, such as Alzheimer's and Parkinson's diseases, epilepsy, schizophrenia and autism spectrum disorders.


Asunto(s)
Encefalopatías/genética , Disfunción Cognitiva/genética , Neuronas GABAérgicas/metabolismo , Neurogénesis/genética , Proteínas Represoras/genética , Adulto , Encefalopatías/metabolismo , Encefalopatías/patología , Diferenciación Celular/genética , Reprogramación Celular , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Interneuronas/metabolismo , Neuroglía/metabolismo , Piel/metabolismo , Piel/patología , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
8.
Methods Mol Biol ; 2352: 97-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324182

RESUMEN

Since the first demonstration of direct dopaminergic neuronal reprogramming, over a dozen methods have been developed to generate induced dopaminergic neurons from various sources of cells. Here, we first present an overview of the different methods to generate induced neurons of a generic type and of different subtypes, with a particular focus on induced dopaminergic neurons generated from human fibroblasts. We then describe a protocol to generate induced dopaminergic neurons from commercially available human fetal lung fibroblasts. These cells could serve for various biomedical application, including regenerative medicine for conditions such as Parkinson's disease.


Asunto(s)
Transdiferenciación Celular , Técnicas de Reprogramación Celular , Reprogramación Celular , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Factores de Transcripción/genética
9.
iScience ; 24(6): 102559, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142058

RESUMEN

Rostrocaudal patterning of the neural tube is a defining event in vertebrate brain development. This process is driven by morphogen gradients which specify the fate of neural progenitor cells, leading to the partitioning of the tube. Although this is extensively studied experimentally, an integrated view of the genetic circuitry is lacking. Here, we present a minimal gene regulatory model for rostrocaudal patterning, whose tristable topology was determined in a data-driven way. Using this model, we identified the repression of hindbrain fate as promising strategy for the improvement of current protocols for the generation of dopaminergic neurons. Furthermore, we combined our model with an established minimal model for dorsoventral patterning on a realistic 3D neural tube and found that key features of neural tube patterning could be recapitulated. Doing so, we demonstrate how data and models from different sources can be combined to simulate complex in vivo processes.

10.
Sci Rep ; 11(1): 1514, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452356

RESUMEN

The direct reprogramming of adult skin fibroblasts to neurons is thought to be controlled by a small set of interacting gene regulators. Here, we investigate how the interaction dynamics between these regulating factors coordinate cellular decision making in direct neuronal reprogramming. We put forward a quantitative model of the governing gene regulatory system, supported by measurements of mRNA expression. We found that nPTB needs to feed back into the direct neural conversion network most likely via PTB in order to accurately capture quantitative gene interaction dynamics and correctly predict the outcome of various overexpression and knockdown experiments. This was experimentally validated by nPTB knockdown leading to successful neural conversion. We also proposed a novel analytical technique to dissect system behaviour and reveal the influence of individual factors on resulting gene expression. Overall, we demonstrate that computational analysis is a powerful tool for understanding the mechanisms of direct (neuronal) reprogramming, paving the way for future models that can help improve cell conversion strategies.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/fisiología , Proteína de Unión al Tracto de Polipirimidina/fisiología , Anciano , Reprogramación Celular/genética , Biología Computacional/métodos , Femenino , Fibroblastos/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Persona de Mediana Edad , Modelos Teóricos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Cultivo Primario de Células , Procesos Estocásticos , Factores de Transcripción/metabolismo
11.
Mov Disord ; 35(3): 401-408, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31724242

RESUMEN

BACKGROUND: Although Huntington's disease (HD) is caused by a single dominant gene, it is clear that there are genetic modifiers that may influence the age of onset and disease progression. OBJECTIVES: We sought to investigate whether new inflammation-related genetic variants may contribute to the onset and progression of HD. METHODS: We first used postmortem brain material from patients at different stages of HD to look at the protein expression of toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2). We then genotyped the TREM2 R47H gene variant and 3 TLR4 single nucleotide polymorphisms in a large cohort of HD patients from the European Huntington's Disease Network REGISTRY. RESULTS: We found an increase in the number of cells expressing TREM2 and TLR4 in postmortem brain samples from patients dying with HD. We also found that the TREM2 R47H gene variant was associated with changes in cognitive decline in the large cohort of HD patients, whereas 2 of 3 TLR4 single nucleotide polymorphisms assessed were associated with changes in motor progression in this same group. CONCLUSIONS: These findings identify TREM2 and TLR4 as potential genetic modifiers for HD and suggest that inflammation influences disease progression in this condition. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Encéfalo , Humanos , Enfermedad de Huntington/genética , Glicoproteínas de Membrana/genética , Células Mieloides , Receptores Inmunológicos/genética , Receptor Toll-Like 4/genética
12.
J Parkinsons Dis ; 10(1): 301-313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31868683

RESUMEN

BACKGROUND: Genetic, biologic and clinical data suggest that Parkinson's disease (PD) is an umbrella for multiple disorders with clinical and pathological overlap, yet with different underlying mechanisms. To better understand these and to move towards neuroprotective treatment, we have established the Quebec Parkinson Network (QPN), an open-access patient registry, and data and bio-samples repository. OBJECTIVE: To present the QPN and to perform preliminary analysis of the QPN data. METHODS: A total of 1,070 consecutively recruited PD patients were included in the analysis. Demographic and clinical data were analyzed, including comparisons between males and females, PD patients with and without RBD, and stratified analyses comparing early and late-onset PD and different age groups. RESULTS: QPN patients exhibit a male:female ratio of 1.8:1, an average age-at-onset of 58.6 years, an age-at-diagnosis of 60.4 years, and average disease duration of 8.9 years. REM-sleep behavior disorder (RBD) was more common among men, and RBD was associated with other motor and non-motor symptoms including dyskinesia, fluctuations, postural hypotension and hallucinations. Older patients had significantly higher rates of constipation and cognitive impairment, and longer disease duration was associated with higher rates of dyskinesia, fluctuations, freezing of gait, falls, hallucinations and cognitive impairment. Since QPN's creation, over 60 studies and 30 publications have included patients and data from the QPN. CONCLUSIONS: The QPN cohort displays typical PD demographics and clinical features. These data are open-access upon application (http://rpq-qpn.ca/en/), and will soon include genetic, imaging and bio-samples. We encourage clinicians and researchers to perform studies using these resources.


Asunto(s)
Bancos de Muestras Biológicas , Disfunción Cognitiva , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sistema de Registros , Edad de Inicio , Anciano , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Femenino , Trastornos Neurológicos de la Marcha/epidemiología , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/fisiopatología , Quebec/epidemiología , Trastorno de la Conducta del Sueño REM/epidemiología , Trastorno de la Conducta del Sueño REM/etiología , Trastorno de la Conducta del Sueño REM/fisiopatología
13.
FEBS Lett ; 593(23): 3370-3380, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31535361

RESUMEN

Direct neuronal reprogramming can be achieved using different approaches: by expressing neuronal transcription factors or microRNAs; and by knocking down neuronal repressive elements. However, there still exists a high variability in terms of the quality and maturity of the induced neurons obtained, depending on the reprogramming strategy employed. Here, we evaluate different long-term culture conditions and study the effect of expressing the neuronal-specific microRNAs, miR124 and miR9/9*, while reprogramming with forced expression of the transcription factors Ascl1, Brn2, and knockdown of the neuronal repressor REST. We show that the addition of microRNAs supports neuronal maturation in terms of gene and protein expression, as well as in terms of electrophysiological properties.


Asunto(s)
Reprogramación Celular/genética , MicroARNs/genética , Neurogénesis/genética , Neuronas/metabolismo , Proteínas Represoras/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biología Computacional , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Factores del Dominio POU/genética
14.
Eur J Neurosci ; 49(4): 463-471, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30099795

RESUMEN

This review describes the history, development, and evolution of cell-based replacement therapy for Parkinson's disease (PD), from the first pioneering trials with fetal ventral midbrain progenitors to future trials using stem cells as well as reprogrammed cells. In the spirit of Tom Isaacs, the review takes parallels to the storyline of Star Wars, including the temptations from the dark side and the continuous fight for the light side of the Force. It is subdivided into headings based on the original movies, spanning from A New Hope to the Last Jedi.


Asunto(s)
Células-Madre Neurales/trasplante , Enfermedad de Parkinson/cirugía , Células Madre Pluripotentes/trasplante , Trasplante de Células Madre , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Enfermedad de Parkinson/historia , Trasplante de Células Madre/historia
15.
J Vis Exp ; (132)2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29443113

RESUMEN

Induced neurons (iNs), the product of somatic cells directly converted to neurons, are a way to obtain patient-derived neurons from tissue that is easily accessible. Through this route, mature neurons can be obtained in a matter of a few weeks. Here, we describe a straightforward and rapid one-step protocol to obtain iNs from dermal fibroblasts obtained through biopsy samples from adult human donors. We explain each step of the process, including the maintenance of the dermal fibroblasts, the freezing procedure to build a stock of the cell line, seeding of the cells for reprogramming, as well as the culture conditions during the conversion process. In addition, we describe the preparation of glass coverslips for electrophysiological recordings, long-term coating conditions, and fluorescence activated cell sorting (FACS). We also illustrate examples of the results to be expected. The protocol described here is easy to perform and can be applied to human fibroblasts derived from human skin biopsies from patients with various different diagnoses and ages. This protocol generates a sufficient amount of iNs which can be used for a wide array of biomedical applications, including disease modeling, drug screening, and target validation.


Asunto(s)
Reprogramación Celular/fisiología , Fibroblastos/metabolismo , Neuronas/metabolismo , Técnicas de Cultivo de Célula , Fibroblastos/citología , Humanos
16.
Front Neurosci ; 11: 530, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29033781

RESUMEN

Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows for the possibility of generating patient-derived neurons. A unique feature of these so-called induced neurons (iNs) is the potential to maintain aging and epigenetic signatures of the donor, which is critical given that many diseases of the CNS are age related. Here, we review the published literature on the work that has been undertaken using iNs to model human brain disorders. Furthermore, as disease-modeling studies using this direct neuronal reprogramming approach are becoming more widely adopted, it is important to assess the criteria that are used to characterize the iNs, especially in relation to the extent to which they are mature adult neurons. In particular: i) what constitutes an iN cell, ii) which stages of conversion offer the earliest/optimal time to assess features that are specific to neurons and/or a disorder and iii) whether generating subtype-specific iNs is critical to the disease-related features that iNs express. Finally, we discuss the range of potential biomedical applications that can be explored using patient-specific models of neurological disorders with iNs, and the challenges that will need to be overcome in order to realize these applications.

17.
EMBO Mol Med ; 9(8): 1117-1131, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28646119

RESUMEN

Direct conversion of human fibroblasts into mature and functional neurons, termed induced neurons (iNs), was achieved for the first time 6 years ago. This technology offers a promising shortcut for obtaining patient- and disease-specific neurons for disease modeling, drug screening, and other biomedical applications. However, fibroblasts from adult donors do not reprogram as easily as fetal donors, and no current reprogramming approach is sufficiently efficient to allow the use of this technology using patient-derived material for large-scale applications. Here, we investigate the difference in reprogramming requirements between fetal and adult human fibroblasts and identify REST as a major reprogramming barrier in adult fibroblasts. Via functional experiments where we overexpress and knockdown the REST-controlled neuron-specific microRNAs miR-9 and miR-124, we show that the effect of REST inhibition is only partially mediated via microRNA up-regulation. Transcriptional analysis confirmed that REST knockdown activates an overlapping subset of neuronal genes as microRNA overexpression and also a distinct set of neuronal genes that are not activated via microRNA overexpression. Based on this, we developed an optimized one-step method to efficiently reprogram dermal fibroblasts from elderly individuals using a single-vector system and demonstrate that it is possible to obtain iNs of high yield and purity from aged individuals with a range of familial and sporadic neurodegenerative disorders including Parkinson's, Huntington's, as well as Alzheimer's disease.


Asunto(s)
Transdiferenciación Celular , Fibroblastos/fisiología , Técnicas de Silenciamiento del Gen , Neuronas/fisiología , Proteínas Represoras/biosíntesis , Adulto , Técnicas Citológicas/métodos , Perfilación de la Expresión Génica , Humanos , MicroARNs/análisis , Proteínas Represoras/genética
18.
F1000Res ; 6: 1751, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29527290

RESUMEN

Background: Recently, the development of Parkinson's disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.

19.
Neurobiol Aging ; 43: 47-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27255814

RESUMEN

The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was despite higher nonshivering thermogenic activity, as evidenced by brown adipose tissue norepinephrine content and uncoupling protein 1 expression. A 24-hour exposure to cold (4 °C) aggravated key neuropathologic markers of AD such as: tau phosphorylation, soluble amyloid beta concentrations, and synaptic protein loss in the cortex of 3×Tg-AD mice. Strikingly, raising the body temperature of aged 3×Tg-AD mice via exposure to a thermoneutral environment improved memory function and reduced amyloid and synaptic pathologies within a week. Our results suggest the presence of a vicious cycle between impaired thermoregulation and AD-like neuropathology, and it is proposed that correcting thermoregulatory deficits might be therapeutic in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Regulación de la Temperatura Corporal , Temperatura , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Temperatura Corporal/fisiología , Frío/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Ratones Transgénicos , Norepinefrina/metabolismo , Fosforilación , Sinapsis/patología , Proteína Desacopladora 1/metabolismo , Proteínas tau/metabolismo
20.
Nat Rev Neurol ; 11(9): 492-503, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26240036

RESUMEN

Parkinson disease (PD) is characterized by loss of the A9 nigral neurons that provide dopaminergic innervation to the striatum. This discovery led to the successful instigation of dopaminergic drug treatments in the 1960s, although these drugs were soon recognized to lose some of their efficacy and generate their own adverse effects over time. Despite the fact that PD is now known to have extensive non-nigral pathology with a wide range of clinical features, dopaminergic drug therapies are still the mainstay of therapy, and work well for many years. Given the success of pharmacological dopamine replacement, pursuit of cell-based dopamine replacement strategies seemed to be the next logical step, and studies were initiated over 30 years ago to explore the possibility of dopaminergic cell transplantation. In this Review, we outline the history of this therapeutic approach to PD and highlight the lessons that we have learned en route. We discuss how the best clinical outcomes have been obtained with fetal ventral mesencephalic allografts, while acknowledging inconsistencies in the results owing to problems in trial design, patient selection, tissue preparation, and immunotherapy used post-grafting. We conclude by discussing the challenges of bringing the new generation of stem cell-derived dopamine cells to the clinic.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedad de Parkinson/terapia , Animales , Ensayos Clínicos como Asunto , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...