Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110060

RESUMEN

An experimental analysis of mechanical behaviour for aluminium-based fibre metal laminates under compression after impact was conducted. Damage initiation and propagation were evaluated for critical state and force thresholds. Parametrization of laminates was done to compare their damage tolerance. Relatively low-energy impact had a marginal effect on fibre metal laminates compressive strength. Aluminium-glass laminate was more damage-resistant than one reinforced with carbon fibres (6% vs. 17% of compressive strength loss); however, aluminium-carbon laminate presented greater energy dissipation ability (around 30%). Significant damage propagation before the critical load was found (up to 100 times the initial damaged area). Damage propagation for assumed load thresholds was minor in comparison to the initial damage size. Metal plastic strain and delaminations are dominant failure modes for compression after impact.

2.
Materials (Basel) ; 15(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36079501

RESUMEN

The paper presents the issues of metal surface treatment in fibre metal laminates (FML) to obtain high adhesion at the metal-composite interface. Aluminium 2024-T3 and titanium Grade 2 were analysed. The metal surface modifications were carried out by mechanical (sandblasting, Scotch-Brite abrasion), chemical (P2 etching, phosphate-fluoride process), electrochemical (chromic and sulphuric acid anodizing), and plasma treatment, as well as the application of sol-gel coatings. In terms of surface geometry, the analysis included roughness and 3D surface topography examination. The morphology was examined using scanning electron and atomic force microscopy. The surface free energy and its components (polar and dispersive) were determined using the Owens-Wendt method. The novelty of this study is the determination of the effect of different surface treatments on the surface free energy, topography, and morphology in terms of the possible appropriate adhesion in fibre metal laminates. Chromic acid anodizing is still the most effective in enhancing the expected adhesion. A suitable technique may be the use of P2 etching of aluminium. It results in low roughness, numerous micro-irregularities, and the presence of porosity. The obtained test results show that the application of sol-gel coating increases the surface free energy and may increase the adhesion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA