Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Lett ; 14(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30185609

RESUMEN

Large-scale analysis of the fossil record requires aggregation of palaeontological data from individual fossil localities. Prior to computers, these synoptic datasets were compiled by hand, a laborious undertaking that took years of effort and forced palaeontologists to make difficult choices about what types of data to tabulate. The advent of desktop computers ushered in palaeontology's first digital revolution-online literature-based databases, such as the Paleobiology Database (PBDB). However, the published literature represents only a small proportion of the palaeontological data housed in museum collections. Although this issue has long been appreciated, the magnitude, and thus potential significance, of these so-called 'dark data' has been difficult to determine. Here, in the early phases of a second digital revolution in palaeontology--the digitization of museum collections-we provide an estimate of the magnitude of palaeontology's dark data. Digitization of our nine institutions' holdings of Cenozoic marine invertebrate collections from California, Oregon and Washington in the USA reveals that they represent 23 times the number of unique localities than are currently available in the PBDB. These data, and the vast quantity of similarly untapped dark data in other museum collections, will, when digitally mobilized, enhance palaeontologists' ability to make inferences about the patterns and processes of past evolutionary and ecological changes.


Asunto(s)
Bases de Datos Factuales/estadística & datos numéricos , Fósiles , Invertebrados , Animales , California , Museos/estadística & datos numéricos , Oregon , Paleontología/métodos , Washingtón
2.
R Soc Open Sci ; 5(3): 172177, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29657811

RESUMEN

Polycotylidae is a clade of plesiosaurians that appeared during the Early Cretaceous and became speciose and abundant early in the Late Cretaceous. However, this radiation is poorly understood. Thililua longicollis from the Middle Turonian of Morocco is an enigmatic taxon possessing an atypically long neck and, as originally reported, a series of unusual cranial features that cause unstable phylogenetic relationships for polycotylids. We reinterpret the holotype specimen of Thililua longicollis and clarify its cranial anatomy. Thililua longicollis possesses an extensive, foramina-bearing jugal, a premaxilla-parietal contact and carinated teeth. Phylogenetic analyses of a new cladistic dataset based on first-hand observation of most polycotylids recover Thililua and Mauriciosaurus as successive lineages at the base of the earliest Late Cretaceous polycotyline radiation. A new dataset summarizing the Bauplan of polycotylids reveals that their radiation produced an early burst of disparity during the Cenomanian-Turonian interval, with marked plasticity in relative neck length, but this did not arise as an ecological release following the extinction of ichthyosaurs and pliosaurids. This disparity vanished during and after the Turonian, which is consistent with a model of 'early experimentation/late constraint'. Two polycotylid clades, Occultonectia clade nov. and Polycotylinae, survived up to the Maastrichtian, but with low diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...