Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microorganisms ; 12(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38399761

RESUMEN

The wetlands of southwestern Siberia (SWS) are a crossroads of bird migration routes, bringing avian influenza (AIV) strains that were previously isolated in different regions of the continent to Siberia. It is known that Anseriformes that breed in SWS migrate for the winter to central Hindustan or further west, while their migration routes to southeast Asia (SEA) remain unconfirmed. Here, we mapped the molting sites of the migrating Common Teals (Anas crecca) via analyzing stable hydrogen isotope content in feathers of hunters' prey and supplemented the analysis with the genetic structure of viruses isolated from teals in the same region. Post-breeding molt of autumn teals most likely occurred within the study region, whereas probable pre-breeding molting grounds of spring teals were in the south of Hindustan. This link was supported by viral phylogenetic analysis, which showed a close relationship between SWS isolates and viruses from south and southeast Asia. Most viral segments have the highest genetic similarity and the closest phylogenetic relationships with viruses from teal wintering areas in southeast Asian countries, including India and Korea. We assume that the winter molt of SWS breeding teals on the Hindustan coast suggests contacts with the local avifauna, including species migrating along the coast to SEA. Perhaps this is one of the vectors of AIV transmission within Eurasia.

2.
Viruses ; 15(5)2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243207

RESUMEN

Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species.


Asunto(s)
Avulavirus , Gammacoronavirus , Virus de la Influenza A , Gripe Aviar , Animales , Patos , Gammacoronavirus/genética , Gripe Aviar/epidemiología , Avulavirus/genética , Siberia/epidemiología , Filogenia , Aves , Animales Salvajes , Virus de la Influenza A/genética , ARN
3.
PeerJ ; 8: e8914, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292659

RESUMEN

BACKGROUND: The bar-headed goose (Anser indicus) mainly inhabits the plateau wetlands of Asia. As a specialized high-altitude species, bar-headed geese can migrate between South and Central Asia and annually fly twice over the Himalayan mountains along the central Asian flyway. The physiological, biochemical and behavioral adaptations of bar-headed geese to high-altitude living and flying have raised much interest. However, to date, there is still no genome assembly information publicly available for bar-headed geese. METHODS: In this study, we present the first de novo whole genome sequencing and assembly of the bar-headed goose, along with gene prediction and annotation. RESULTS: 10X Genomics sequencing produced a total of 124 Gb sequencing data, which can cover the estimated genome size of bar-headed goose for 103 times (average coverage). The genome assembly comprised 10,528 scaffolds, with a total length of 1.143 Gb and a scaffold N50 of 10.09 Mb. Annotation of the bar-headed goose genome assembly identified a total of 102 Mb (8.9%) of repetitive sequences, 16,428 protein-coding genes, and 282 tRNAs. In total, we determined that there were 63 expanded and 20 contracted gene families in the bar-headed goose compared with the other 15 vertebrates. We also performed a positive selection analysis between the bar-headed goose and the closely related low-altitude goose, swan goose (Anser cygnoides), to uncover its genetic adaptations to the Qinghai-Tibetan Plateau. CONCLUSION: We reported the currently most complete genome sequence of the bar-headed goose. Our assembly will provide a valuable resource to enhance further studies of the gene functions of bar-headed goose. The data will also be valuable for facilitating studies of the evolution, population genetics and high-altitude adaptations of the bar-headed geese at the genomic level.

4.
Arch Microbiol ; 202(5): 983-993, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31901964

RESUMEN

The black-necked crane (Grus nigricollis) is a vulnerable species, breeding exclusively on the high-altitude wetlands of the Qinghai-Tibet Plateau. Bird species harbor diverse communities of microorganisms within their gastrointestinal tracts, which have important roles in the health, nutrition, and physiology of birds. Hitherto, virtually nothing was known about the gut microbial communities associated with wild black-necked cranes. For the first time, this study characterized the gut microbial community compositions, diversity, and functions of black-necked cranes from six wintering areas in China using the Illumina Miseq platform. The taxonomic results revealed that Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the four most abundant phyla in the gut of black-necked cranes. At the genus level, 11 genera including Lactobacillus, Pseudomonas, Carnobacterium, Pantoea, Enterococcus, Erwinia, Turicibacter, Bacillus, Phenylobacterium, Sanguibacter, and Psychrobacter were dominant. The differences in the gut microbial community alpha and the beta diversities of black-necked cranes among the six wintering areas were investigated. Furthermore, the representative microbial taxa and their predicted functions in each wintering location were also determined. These data represent the first analysis of the gut microbiome of black-necked cranes, providing a baseline for further microbiological studies and a foundation for the conservation of this bird.


Asunto(s)
Bacterias/clasificación , Aves/microbiología , Microbioma Gastrointestinal/genética , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Aves/fisiología , China , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal/fisiología , Microbiota , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Estaciones del Año , Tibet , Humedales
5.
Folia Microbiol (Praha) ; 65(3): 533-543, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31768913

RESUMEN

As one of the dominant waterfowl species of wetland areas in the Qinghai-Tibet Plateau, since 2003, artificial rearing of bar-headed geese (Anser indicus) has increased in several provinces of China for the purpose of conservation and economic development. In this study, we systematically characterized the microbial community diversity, compositions and predicted functions of semi-artificially reared bar-headed geese by sampling five different gut locations (the oropharynxs, crops, gizzards, ceca, and cloacae) along the gastrointestinal tracts of three individuals. Alpha diversity analyses showed that the gizzards had the richest species diversity and that the ceca had the least. Beta diversity analyses showed that the cecal samples formed their own cluster, while samples from the oropharynxs, crops, gizzards, and cloacae overlapped with each other. At the phylum level, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria constituted the top five dominant phyla among all five gastrointestinal sections. At the genus level, a total of 10 genera with proportions above 2.5% were found to be significantly different among the gastrointestinal sections. Furthermore, 53 genera were detected in all gastrointestinal sections of bar-headed geese. PICRUSt data also predicted a group of microbial functions overrepresented in the different segments of the gastrointestinal tracts. Understanding the microbiota along the bar-headed geese gastrointestinal tracts is essential for future microbiological study of this bird and may contribute to the development of geese husbandry.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Gansos/microbiología , Animales , China , Granjas , Tracto Gastrointestinal/microbiología , Variación Genética , Filogenia
6.
Microorganisms ; 7(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816947

RESUMEN

Wild waterfowl birds are known to be the main reservoir for a variety of avian influenza viruses of different subtypes. Some subtypes, such as H2Nx, H8Nx, H12Nx, and H14Nx, occur relatively rarely in nature. During 10-year long-term surveillance, we isolated five rare H12N5 and one H12N2 viruses in three different distinct geographic regions of Northern Eurasia and studied their characteristics. H12N2 from the Far East region was a double reassortant containing hemagglutinin (HA), non-structural (NS) and nucleoprotein (NP) segments of the American lineage and others from the classical Eurasian avian-like lineage. H12N5 viruses contain Eurasian lineage segments. We suggest a phylogeographical scheme for reassortment events associated with geographical groups of aquatic birds and their migration flyways. The H12N2 virus is of particular interest as this subtype has been found in common teal in the Russian Far East region, and it has a strong relation to North American avian influenza virus lineages, clearly showing that viral exchange of segments between the two continents does occur. Our results emphasize the importance of Avian Influenza Virus (AIV) surveillance in Northern Eurasia for the annual screening of virus characteristics, including the genetic constellation of rare virus subtypes, to understand the evolutionary ecology of AIV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...