Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38068248

RESUMEN

With the development of mobile electronic devices, there are more and more requirements for high-energy storage equipment. Traditional lithium-ion batteries, like lithium-iron phosphate batteries, are limited by their theoretical specific capacities and might not meet the requirements for high energy density in the future. Lithium-sulfur batteries (LSBs) might be ideal next-generation energy storage devices because they have nearly 10 times the theoretical specific capacities of lithium-ion batteries. However, the severe capacity decay of LSBs limits their application, especially at high currents. In this study, an ionic liquid (IL) electrolyte additive, TDA+TFSI, was reported. When 5% of the TDA+TFSI additive was added to a traditional ether-based organic electrolyte, the cycling performance of the LSBs was significantly improved compared with that of the LSBs with the pure traditional organic electrolyte. At a rate of 0.5 C, the discharge specific capacity in the first cycle of the LSBs with the 5% TDA+TFSI electrolyte additive was 1167 mAh g-1; the residual specific capacities after 100 cycles and 300 cycles were 579 mAh g-1 and 523 mAh g-1, respectively; and the average capacity decay rate per cycle was only 0.18% in 300 cycles. Moreover, the electrolyte with the TDA+TFSI additive had more obvious advantages than the pure organic ether-based electrolyte at high charge and discharge currents of 1.0 C. The residual discharge specific capacities were 428 mAh g-1 after 100 cycles and 399 mAh g-1 after 250 cycles, which were 13% higher than those of the LSBs without the TDA+TFSI additive. At the same time, the Coulombic efficiencies of the LSBs using the TDA+TFSI electrolyte additive were more stable than those of the LSBs using the traditional organic ether-based electrolyte. The results showed that the LSBs with the TDA+TFSI electrolyte additive formed a denser and more uniform solid electrolyte interface (SEI) film during cycling, which improved the stability of the electrochemical reaction.

2.
Materials (Basel) ; 16(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512423

RESUMEN

Thermo-sensitive microgels known as PMO-MGs were synthesized via surfactant free emulsion polymerization, with poly(ethylene glycol) methacrylate (OEGMA475) and 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) used as the monomers and N, N-methylene-bis-acrylamide used as the crosslinker. PMO-MGs are spherical in shape and have an average diameter of 323 ± 12 nm, as determined via transmission electron microscopy. PMO-MGs/poly (ether sulfone) (PES) composited ultrafiltration membranes were then successfully prepared via the non-solvent-induced phase separation (NIPS) method using a PMO-MG and PES mixed solution as the casting solution. The obtained membranes were systematically characterized via combined X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and contact angle goniometer techniques. It was found that the presence of PMO-MGs significantly improved the surface hydrophilicity and antifouling performance of the obtained membranes and the PMO-MGs mainly located on the channel surface of the membranes. At 20 °C, the pure water flux increased from 217.6 L·m-2·h-1 for pure PES membrane (M00) to 369.7 L·m-2·h-1 for PMO-MGs/PES composited membrane (M20) fabricated using the casting solution with 20-weight by percentage microgels. The incorporation of PMO-MGs also gave the composited membranes a thermo-sensitive character. When the temperature increased from 20 to 45 °C, the pure water flux of M20 membrane was enhanced from 369.7 to 618.7 L·m-2·h-1.

3.
ACS Appl Mater Interfaces ; 15(28): 33985-33997, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37418692

RESUMEN

Chromic materials play a decisive and escalating role in information security. However, it is challenging to develop chromic materials for encryption technologies that can hardly be imitated. Inspired by versatile metachrosis in nature, a series of coumarin-based 7-(6-bromohexyloxy)-coumarin microgel colloidal crystals (BrHC MGCC) with multiresponsive chromism are able to be assembled by ionic microgels in poly(vinyl alcohol) (PVA) solution followed by two cycles of freezing-thawing. The ionic microgels can be finely tailored by in situ quaternization with tunable size under varied temperatures and hydration energies of counterions as well as quenched luminescence under UV irradiation, which endows BrHC MGCC with intriguing chromism in the dual-channel coloration of physical structural color and chemical fluorescent color. Three types of BrHC MGCC exhibit various change ranges in structural coloration and similar quenching in fluorescence emission, which can be utilized for the development of the static-dynamic combined anticounterfeiting system with dual coloration. The information conveyed by the BrHC MGCC array presents dynamic variation versus temperature, while the static information can be only integrally read in both sunlight and a 365 nm UV lamp. The fabrication of a microgel colloidal crystal with dual coloration opens a facile and ecofriendly window for multilevel information security, camouflage, and a cumbersome authentication process.

4.
ACS Appl Bio Mater ; 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083038

RESUMEN

Ischemic stroke, as a prevalent neurological disorder, often results in rapid increases in the production of reactive oxygen species (ROS) and inflammatory factors in the focal ischemic area. Though edaravone is an approved treatment, its effect is limited due to its weak ability to cross the blood-brain barrier (BBB) and short half-life. Other effective pharmacological treatment options are clearly lacking. In this study, PNIVDBrF-3-Eda (also named MG-3-Eda) was prepared using a thermo- and pH dual-responsive PNIVDBrF microgel. These were designed with a positively charged network, as synthesized by simultaneous quaternization cross-linking and surfactant-free emulsion copolymerization, to be loaded with the negatively charged edaravone. We then investigated whether such a targeted delivery of edaravone could provide enhanced neuroprotection. Cytotoxicity assays confirmed that the microgel (<1 mg/mL) exhibited promising cytocompatibility with no remarkable effect on cell viability, cell cycle regulation, or apoptosis levels. In vitro and in vivo experiments demonstrated that the microgels could successfully penetrate the blood-brain barrier where efficient BBB crossing was observed after disruption of the BBB due to ischemic injury. This enabled MG-3-Eda to target the cerebral ischemic area and achieve local release of edaravone. Treatment with MG-3-Eda significantly reduced the cerebral infarct area in transient middle cerebral artery occlusion (tMCAO) mice and significantly improved behavioral scores. MG-3-Eda treatment also prevented the reduction in NF200 expression, a neuronal marker protein, and attenuated microglia activation (as detected by Iba1) in the local ischemic area via local antioxidant and anti-inflammatory effects. A superior neuroprotective effect was noted for MG-3-Eda compared to that for free edaravone. Our results indicate that MG-3-Eda administration represents a clear potential treatment for cerebral ischemia via its targeted delivery of edaravone to ischemic areas where it provides significant local antioxidant and anti-inflammatory effects.

5.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014634

RESUMEN

Being the main components of physical sunscreens, zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are often used together in different brands of sunscreen products with different proportions. With the broad use of cosmetics containing these nanoparticles (NPs), concerns regarding their joint skin toxicity are becoming more and more prominent. In this study, the co-exposure of these two NPs in human-derived keratinocytes (HaCaT) and the in vitro reconstructed human epidermis (RHE) model EpiSkin was performed to verify their joint skin effect. The results showed that ZnO NPs significantly inhibited cell proliferation and caused deoxyribonucleic acid (DNA) damage in a dose-dependent manner to HaCaT cells, which could be rescued with co-exposure to TiO2 NPs. Further mechanism studies revealed that TiO2 NPs restricted the cellular uptake of both aggregated ZnO NPs and non-aggregated ZnO NPs and meanwhile decreased the dissociation of Zn2+ from ZnO NPs. The reduced intracellular Zn2+ ultimately made TiO2 NPs perform an antagonistic effect on the cytotoxicity caused by ZnO NPs. Furthermore, these joint skin effects induced by NP mixtures were validated on the epidermal model EpiSkin. Taken together, the results of the current research contribute new insights for understanding the dermal toxicity produced by co-exposure of different NPs and provide a valuable reference for the development of formulas for the secure application of ZnO NPs and TiO2 NPs in sunscreen products.

6.
ACS Appl Mater Interfaces ; 14(15): 17794-17805, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35404060

RESUMEN

The proposal of the aggregation-induced emission (AIE) effect shines a light on the practical application of luminescent materials. The AIE-active luminescence microgels (TPEC MGs) with photo-induced color-changing behavior were developed by integrating positively charged AIE luminogens (AIEgens) into the anionic network of microgels, where AIEgens of TPEC were obtained from the quaternization reaction between tetra-(4-pyridylphenyl)ethylene (TPE-4Py) and 7-(6-bromohexyloxy)-coumarin. The aqueous suspensions of TPEC MGs exhibit a significant AIE effect following the enhancement of quantum yield. In addition, further increase in fluorescence intensity and blueshift occur at elevated temperatures due to the collapse of microgels. The distinctive photochromic behavior of TPEC MGs was observed, which presents as the transition from orange-yellow to blue-green color under UV irradiation, which is different from TPEC in good organic solvents. The phenomenon of color changing can be ascribed to the competition between photodimerization of the coumarin part and photocyclization of TPE-4Py in TPEC. The photochromic TPEC MG aqueous suspensions can be conducted as aqueous microgel inks for information display, encryption, and dynamic anticounterfeiting.

7.
Stem Cell Res Ther ; 13(1): 66, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135594

RESUMEN

BACKGROUND: Thin endometrium is a primary cause of defective endometrial receptivity, resulting in infertility or recurrent miscarriage. Much effort has been devoted toward regenerating thin endometrium by stem cell-based therapies. The human placenta-derived mesenchymal stem cells (HP-MSCs) are emerging alternative sources of MSCs with various advantages. To maximize their retention inside the uterus, we loaded HP-MSCs with cross-linked hyaluronic acid hydrogel (HA hydrogel) to investigate their therapeutic efficacy and possible underlying mechanisms. METHODS: Ethanol was injected into the mice uterus to establish the endometrium-injured model. The retention time of HP-MSCs and HA hydrogel was detected by in vivo imaging, while the distribution of HP-MSCs was detected by immunofluorescence staining. Functional restoration of the uterus was assessed by testing embryo implantation rates. The endometrial morphological alteration was observed by H&E staining, Masson staining, and immunohistochemistry. In vitro studies were further conducted using EdU, transwell, tube formation, and western blot assays. RESULTS: Instilled HP-MSCs with HA hydrogel (HP-MSCs-HA) exhibited a prolonged retention time in mouse uteri than normal HP-MSCs. In vivo studies showed that the HP-MSCs-HA could significantly increase the gland number and endometrial thickness (P < 0.001, P < 0.05), decrease fibrous area (P < 0.0001), and promote the proliferation and angiogenesis of endometrial cells (as indicated by Ki67 and VEGF, P < 0.05, P < 0.05, respectively) in mice injured endometrium. HP-MSCs-HA could also significantly improve the embryo implantation rate (P < 0.01) compared with the ethanol group. Further mechanistic study showed the paracrine effects of HP-MSCs. They could not only promote the proliferation and migration of human endometrial stromal cells via the JNK/Erk1/2-Stat3-VEGF pathway but also facilitate the proliferation of glandular cells via Jak2-Stat5 and c-Fos-VEGF pathway. In turn, the increased VEGF in the endometrium promoted the angiogenesis of endothelial cells. CONCLUSION: Our study suggested the potential therapeutic effects and the underlying mechanisms of HP-MSCs-HA on treating thin endometrium. HA hydrogel could be a preferable delivery method for HP-MSCs, and the strategy represents a promising therapeutic approach against endometrial injury in clinical settings.


Asunto(s)
Ácido Hialurónico , Células Madre Mesenquimatosas , Animales , Endometrio/metabolismo , Células Endoteliales , Femenino , Humanos , Ácido Hialurónico/metabolismo , Hidrogeles/farmacología , Células Madre Mesenquimatosas/metabolismo , Ratones , Placenta , Embarazo
8.
Materials (Basel) ; 14(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361419

RESUMEN

Today, the requirement for clean, highly efficient, and safe energy seems to be higher and higher due to non-renewable energy and pollution of the environment. At this moment, lithium-ion batteries (LIBs) look like a reliable solution for this dilemma since they have huge energy density. However, the flammability of the conventional electrolyte used in the LIBs is one of critical disadvantages of LIBs, which compromises the safety issue of LIBs. Herein, we reported a non-flammable zwitterionic ionic liquid-based electrolyte named TLPEC, which was fabricated by simply mixing a novel zwitterionic ionic liquid TLP (93 wt%) and ethylene carbonate (EC, 7 wt%). The TLPEC electrolyte exhibited a wide electrochemical potential window of 1.65-5.10 V and a robust ionic conductivity of 1.0 × 10-3 S cm-1 at 20 °C, which renders TLPEC to be a suitable electrolyte for LIBs with enhanced safety performance. The LIBs, with TLPEC as the electrolyte, exhibited an excellent performance in terms of excellent rate capability, cycling stability, and high specific capacity at 25 and 60 °C, which were attributed to the stability and high ionic conductivity of TLPEC electrolyte during cycling as well as the excellent interface compatibility of TLPEC electrolyte with lithium anode.

9.
ACS Macro Lett ; 10(10): 1321-1325, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35549030

RESUMEN

In this work, we used zwitterionic poly(4-vinylpyridine) propane-1-sulfonate (PVPS) as a constituent block to construct high χ-low N block copolymers (BCPs) with different neutral polymers as the other block, including polystyrene (PS), poly(ethylene oxide) (PEO), and poly(l-lactide) (PLLA). Lamellar structures with sub-5 nm microdomains were observed in all three types of BCPs. Due to the tendency of self-aggregation induced by electrostatic interaction in polyzwitterion, the Flory-Huggins parameters (χ) between PVPS and most neutral polymers are relatively high, which provides a facile and efficient way to fabricate high χ-low N BCPs. In addition, the dimension of the sub-5 nm structures formed in PVPS-containing BCPs showed high thermal stability with a small fluctuation (±0.1 nm) of domain spacings upon heating.

10.
Polymers (Basel) ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987761

RESUMEN

A series of linear amphiphilic pentablock terpolymer PAAx-b-PS48-b-PEO46-b-PS48-b-PAAx (AxS48O46S48Ax) with various lengths x of the PAA block (x = 15, 40, 60, and 90) were synthesized via a two-step atom transfer radical polymerization (ATRP) using Br-poly(ethylene oxide)-Br (Br-PEO46-Br) as the macroinitiator, styrene (St) as the first monomer, and tert-butyl acrylate (tBA) as the second monomer, followed with the hydrolysis of PtBA blocks. The AxS48O46S48Ax pentablock terpolymers formed micelles in dilute aqueous solution, of which the morphologies were dependent on the length x of the PAA block. Cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and zeta potential measurement were employed to investigate the morphologies, chain structures, size, and size distribution of the obtained micelles. The morphology of AxS48O46S48Ax micelles changed from spherical vesicles with ordered porous membranes to long double nanotubes, then to long nanotubes with inner modulated nanotubes or short nanotubes, and finally, to spherical micelles or large compound vesicles with spherical micelles inside when x increased from 15 to 90. The hydrophobic PS blocks formed the walls of vesicles and nanotubes as well as the core of spherical micelles. The hydrophilic PEO and PAA block chains were located on the surfaces of vesicle membranes, nanotubes, and spherical micelles. The PAA block chains were partially ionized, leading to the negative zeta potential of AxS48O46S48Ax micelles in dilute aqueous solutions.

11.
J Mol Model ; 26(9): 229, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32785788

RESUMEN

Theoretical investigation on the transport properties of graphene nanoflakes (GNFs) with protrusions has been performed with density-functional calculations by considering the influence of the structural symmetry. It is found that GNFs with different widths of protrusions exhibit distinctly different transport properties, depending on whether they are mirror symmetric with respect to the midplane (σ) between the two edges. For the symmetric models, electrons primarily pass through the edges of the GNFs with a small transmission probability. On the contrary, the electrons prefer to transit along one side of the GNFs with a high probability in the asymmetric models. Therefore, the conductivity of asymmetric models is greater than that of symmetric models.

12.
Part Fibre Toxicol ; 17(1): 23, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513195

RESUMEN

BACKGROUND: Wide applications of nanoparticles (NPs) have raised increasing concerns about safety to humans. Oxidative stress and inflammation are extensively investigated as mechanisms for NPs-induced toxicity. Autophagy and lysosomal dysfunction are emerging molecular mechanisms. Inhalation is one of the main pathways of exposing humans to NPs, which has been reported to induce severe pulmonary inflammation. However, the underlying mechanisms and, more specifically, the interplays of above-mentioned mechanisms in NPs-induced pulmonary inflammation are still largely obscure. Considered that NPs exposure in modern society is often unavoidable, it is highly desirable to develop effective strategies that could help to prevent nanomaterials-induced pulmonary inflammation. RESULTS: Pulmonary inflammation induced by intratracheal instillation of silica nanoparticles (SiNPs) in C57BL/6 mice was prevented by PJ34, a poly (ADP-ribose) polymerase (PARP) inhibitor. In human lung bronchial epithelial (BEAS-2B) cells, exposure to SiNPs reduced cell viability, and induced ROS generation, impairment in lysosome function and autophagic flux. Inhibition of ROS generation, PARP and TRPM2 channel suppressed SiNPs-induced lysosome impairment and autophagy dysfunction and consequent inflammatory responses. Consistently, SiNPs-induced pulmonary inflammation was prevented in TRPM2 deficient mice. CONCLUSION: The ROS/PARP/TRPM2 signaling is critical in SiNPs-induced pulmonary inflammation, providing novel mechanistic insights into NPs-induced lung injury. Our study identifies TRPM2 channel as a new target for the development of preventive and therapeutic strategies to mitigate nanomaterials-induced lung inflammation.


Asunto(s)
Autofagia/efectos de los fármacos , Lisosomas/efectos de los fármacos , Nanopartículas/toxicidad , Neumonía/inducido químicamente , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/toxicidad , Canales Catiónicos TRPM/metabolismo , Animales , Exposición por Inhalación , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Neumonía/metabolismo , Neumonía/patología , Transducción de Señal , Propiedades de Superficie
13.
Langmuir ; 36(9): 2427-2438, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32053750

RESUMEN

Of the multitude of stimuli-responsive microgels, it is still a challenge to achieve multiple responsivenesses to one single stimulus, which can even revert to the corresponding original state autonomously after stimulus. In this work, we reported a series of anthraquinone functionalized microgels (PNI-xVAQ) with thermosensitivity and redox-actuated self-regulating color, size, and fluorescent properties, which were easily synthesized via surfactant-free emulsion copolymerization (SFEP) with N-isopropylacrylamide (NIPAm) as the monomer, 2-vinylanthraquinone (VAQ) as the comonomer, and N,N'-methylenebis(acrylamide) (BIS) as the cross-linker in an aqueous solution at 70 °C. The hydrophobic interactions of comonomer VAQ also led to the formation of internal phase-separated hydrophobic nanodomains in the obtained PNI-xVAQ microgels. The self-regulating color, size, and fluorescence changes of the PNI-xVAQ microgels were reliant on the nonequilibrium redox process of anthraquinone moieties by the addition of sodium dithionite as the chemical fuel to activate the positive feedback that was the reduction of anthraquinone to transient anthraquinone radical anions, following the slow oxidation of anthraquinone radical anions by autonomous "breathing" oxygen in air as the delayed negative feedback. These autonomous self-regulating properties of the PNI-xVAQ microgel were recyclable to a certain extent by repeated feeding of sodium dithionite.

14.
ACS Appl Mater Interfaces ; 12(10): 11635-11642, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048831

RESUMEN

The shuttle effect of polysulfide and the flammability of the conventional electrolyte are the two major obstacles restricting the development progress of lithium-sulfur batteries. Exploring highly efficient electrolyte components coupled with the conventional electrolyte is a reliable strategy to solve these issues. However, the current electrolyte components usually relieve these issues at the expense of the sacrificed electrochemical performance. Herein, a novel zwitterionic ionic liquid named as TLTFSI is reported, which exhibits a high ionic conductivity of 3.7 × 10-3 S cm-1, a wide electrochemical potential window from 1.51 to 4.82 V at 25 °C, and a high thermal decomposition temperature of 275 °C. The optimized TLTFSI-based electrolyte is nonflammable and performs superior electrochemical performance in terms of larger capacity, better rate capability, and longer cyclic life compared with the conventional organic electrolyte. The robust performance is attributed to the high intrinsic ionic conductivity, the suppressed polysulfide dissolution/diffusion, and the high interface compatibility toward the lithium anode of the TLTFSI-based electrolytes. This present work represents the first demonstration of the zwitterionic ionic liquid to efficiently improve the overall electrochemical performance and the safety of lithium-sulfur batteries.

15.
ACS Appl Bio Mater ; 3(11): 7278-7290, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35019471

RESUMEN

A receptive endometrium with proper thickness is essential for successful embryo implantation. However, endometrial injury caused by intrauterine procedures often leads to pathophysiological changes in its environment, resulting in subsequent female infertility. Among diverse treatment methods of endometrial injury, hydrogels are a class of hydrophilic three-dimensional polymeric network with biocompatibility as well as the capability of absorbing water and encapsulation, which have potential applications as a promising intrauterine controlled-release delivery system. This review summarizes recent advances in the approaches of endometrial repair and further focuses on the application of a hydrogel-based delivery system in endometrial repair, including its preparation, therapeutic loading considerations, clinical applications, as well as working mechanisms.

16.
Langmuir ; 35(49): 16353-16365, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31718193

RESUMEN

Poly(N-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels were successfully prepared via surfactant-free emulsion polymerization (SFEP) at 70 °C in aqueous solution using N-isopropylacrylamide (NIPAM) as the monomer and a natural polyphenol macromolecule, TA, as the sole cross-linker. The cross-linking network of the PNIPAM-TA microgels was confirmed to contain both physical cross-linking structures formed via hydrogen-bonding interactions between TA and PNIPAM chains and chemical cross-linking structures formed via capturing the radicals of propagating polymer chains by catechol and pyrogallol groups of TA. Furthermore, TA was applied to modify the surface of hydrophobic Fe3O4 nanoparticles, leading to hydrophilic Fe3O4@TA composite nanoparticles, which were successfully used as the cross-linker to fabricate PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels. The obtained PNIPAM-TA and PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels had a uniform spherical shape with a relatively narrow size distribution and exhibited thermosensitive behavior and pH-tunable degradation. The PNIPAM-TA microgels were stable in the pH range of 1.3-11.1 but underwent complete degradation with pH above 11.4. The PNIPAM-Fe3O4@TA hybrid microgels were partially degraded at pH values of 1.3 and 2.1, stable in the pH range of 3.1-11.1, and underwent complete degradation at pH above 11.4. The partial degradation of PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels under strong acidic conditions was attributed to the disintegration of Fe3O4 nanoparticles. The complete degradation of both microgels at pH above 11.4 was attributed to the hydrolysis of ester groups of TA under strong alkali conditions.

17.
Sensors (Basel) ; 19(19)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569397

RESUMEN

A highly selective and sensitive optical sensor was developed to colorimetric detect trace Fe3+ ions in aqueous solution. The sensor was the sulfasalazine (SSZ) functionalized microgels (SSZ-MGs), which were fabricated via in-situ quaternization reaction. The obtained SSZ-MGs had hydrodynamic radius of about 259 ± 24 nm with uniform size distribution at 25 °C. The SSZ-MG aqueous suspensions can selectively and sensitively response to Fe3+ ions in aqueous solution at 25 °C and pH of 5.6, which can be quantified by UV-visible spectroscopy and also easily distinguished by the naked eye. Job's plot indicated that the molar binding ratio of SSZ moiety in SSZ-MGs to Fe3+ was close to 1:1 with an apparent association constant of 1.72 × 104 M-1. A linear range of 0-12 µM with the detection limit of 0.110 µM (0.006 mg/L) was found. The obtained detection limit was much lower than the maximum allowance level of Fe3+ ions in drinking water (0.3 mg/L) regulated by the Environmental Protection Agency (EPA) of the United States. The existence of 19 other species of metal ions, namely, Ag+, Li+, Na+, K+, Ca2+, Ba2+, Cu2+, Ni2+, Mn2+, Pb2+, Zn2+, Cd2+, Co2+, Cr3+, Yb3+, La3+, Gd3+, Ce3+, and Bi3+, did not interfere with the detection of Fe3+ ions.

18.
Langmuir ; 35(18): 6145-6153, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30983362

RESUMEN

Degradable and thermosensitive microgels were successfully prepared via simultaneous quaternization and siloxane condensation during surfactant-free emulsion polymerization, with N-vinylcaprolactam as the main monomer and 1-vinylimidazole (VIM) as the comonomer, in the presence of (3-bromopropyl)trimethoxysilane (BPTMOS). The formation mechanism of cross-linking network was attributed to the hydrolysis and condensation of the methoxysilyl groups of BPTMOS and the quaternization of imidazole moiety of VIM by the bromine group of BPTMOS, leading to the microgels. The microgels were spherical in shape with a narrow size distribution, stable in an acidic buffer solution, but degradable in neutral and alkaline solutions. The presence of quaternized imidazolium in the same chain segment of Si-O-Si cross-linking points promoted the decomposition of Si-O-Si bonds and hence the degradation of the microgels. The obtained microgels could load and release the model drug, doxorubicin. The size, thermosensitivity, stability, degradation rate, and drug release behavior of the resultant microgels could be tuned by controlling the cross-linking degree, chemical composition, and degradation medium.

19.
ACS Appl Mater Interfaces ; 11(5): 5441-5454, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30624049

RESUMEN

We report the ultrastiff and tough poly(acrylamide- co-acrylic acid)/Na-alginate/Fe3+ (P(AM- co-AA)/Na-alginate/Fe3+) hydrogel via the formation of hybrid ionic-hydrogen bond cross-linking networks. The optimal P(AM- co-AA)/Na-alginate/Fe3+ hydrogel possessed super high elastic modulus (∼24.6 MPa), tensile strength (∼10.4 MPa), compression strength (∼44 MPa), and toughness (∼4800 J/m2). The P(AM- co-AA)/Na-alginate/Fe3+ hydrogel was highly stable and maintained its superior mechanical properties in 0.5-2 M NaCl solution, aqueous solution with pH ranging from 4 to 10. The ionic cross-linking networks of the P(AM- co-AA)/Na-alginate/Fe3+ hydrogels can be locally and selectively dissociated by treating with aqueous NaOH solution with pH of 13 for 1 min and reformed by locally adding the additional Fe3+ solutions, making the hydrogels healable and cohesive. The healed hydrogels from the cutting surfaces can bear a tensile strength of up to 7.1 MPa. Various complex hydrogel structures can be constructed by using the P(AM- co-AA)/Na-alginate/Fe3+ hydrogels as building blocks via the adhesion of as-prepared hydrogels.

20.
ACS Macro Lett ; 8(10): 1280-1284, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35651168

RESUMEN

We observe that the Tg confinement effect of polymer films can saturate with polymer-substrate interaction. Thickness dependences of the glass transition temperature, Tg(h0), of random copolymer films of 4-tert-butylstyrene (TBS) and 4-acetoxystyrene (AS) supported by silica (SiOx) were measured for different TBS concentrations, XTBS. For 0 ≤ XTBS ≤ 0.47, Tg(h0) displays identical enhancements, independent of XTBS. For XTBS > ∼0.66; however, Tg(h0) decreases steadily with XTBS. The XTBS > 0.66 result is in keeping with expectations that TBS interacts less strongly with SiOx than AS does, and weaker polymer-substrate interaction renders greater dominance of the air surface over substrate surface on Tg, and thereby Tg reduction. We propose that saturation in Tg(h0) found for XTBS ≤ 0.47 is caused by the maximization in polymer-substrate-specific bond formation. Further experiments and a calculation support this proposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...