Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1336402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742197

RESUMEN

Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.


Asunto(s)
Nefropatías Diabéticas , Metabolismo de los Lípidos , Humanos , Nefropatías Diabéticas/metabolismo , Animales , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/complicaciones , Microbioma Gastrointestinal
2.
Plant Direct ; 6(5): e400, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35582629

RESUMEN

MicroRNAs (miRNAs) play an important role in growth, development, stress resilience, and epigenetic modifications of plants. However, the effect of calcium (Ca2+) deficiency on miRNA expression in the orphan crop tef (Eragrostis tef) remains unknown. In this study, we analyzed expression of miRNAs in roots and shoots of tef in response to Ca2+ treatment. miRNA-seq followed by bioinformatic analysis allowed us to identify a large number of small RNAs (sRNAs) ranging from 17 to 35 nt in length. A total of 1380 miRNAs were identified in tef experiencing long-term Ca2+ deficiency while 1495 miRNAs were detected in control plants. Among the miRNAs identified in this study, 161 miRNAs were similar with those previously characterized in other plant species and 348 miRNAs were novel, while the remaining miRNAs were uncharacterized. Putative target genes and their functions were predicted for all the known and novel miRNAs that we identified. Based on gene ontology (GO) analysis, the predicted target genes are known to have various biological and molecular functions including calcium uptake and transport. Pairwise comparison of differentially expressed miRNAs revealed that some miRNAs were specifically enriched in roots or shoots of low Ca2+-treated plants. Further characterization of the miRNAs and their targets identified in this study may help in understanding Ca2+ deficiency responses in tef and related orphan crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA