Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636406

RESUMEN

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Asunto(s)
Benzo(a)pireno , ARN Interferente Pequeño , Animales , Ratones , Benzo(a)pireno/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , Humanos , ARN de Interacción con Piwi
2.
Biochem Pharmacol ; : 115936, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38012969

RESUMEN

Continuous (chronic or sub-chronic) alcohol consumption induces a metabolic byproduct known as ketone bodies, and the accumulation of ketones leads to a life-threatening syndrome called alcoholic ketoacidosis. However, the mechanism underlining the physiological effects of ketone accumulation in alcoholic liver disease (ALD) is still in its infancy. Here, we discovered that mitochondrial acetyl-CoA accumulation was diverted into the ketogenesis pathway in ethanol-fed mice and ethanol-exposed hepatocytes. Unexpectedly, global protein lysine ß-hydroxybutyrylation (Kbhb) was induced in response to increased ketogenesis-derived ß-hydroxybutyrate (BHB) levels both in hepatocytes and in livers of mice. Focusing on the solute carrier family (SLCs), we found that SLC25A5 presented obvious Kbhb at lysine residues 147 and 166. Kbhb modifications at these two lysine residues stabilized SLC25A5 expression by blocking ubiquitin-proteasome pathway. Subsequent mutation analysis revealed that Kbhb of SLC25A5 at K147 and K166 had site-specific regulatory roles by increasing peroxisome proliferator activated receptor gamma (PPARγ) expression, which further promoting lipogenesis. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (HMGCS2), a rate-limiting enzyme for BHB production, was profoundly induced by ethanol exposure, and knockout of Hmgcs2 with CRISPR/Cas9 attenuated SLC25A5 Kbhb. Together, our study demonstrated a widespread Kbhb landscape under ethanol exposure and clarified a physiological effect of Kbhb modification on liver lipid accumulation.

3.
Hepatology ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820269

RESUMEN

BACKGROUND AND AIMS: DILI accounts for more than half of acute liver failure cases in the United States and is a major health care issue for the public worldwide. As investigative toxicology is playing an evolving role in the pharmaceutical industry, mechanistic insights into drug hepatotoxicity can facilitate drug development and clinical medication. METHODS: By integrating multisource datasets including gene expression profiles of rat livers from open TG-GATE database and DrugMatrix, drug labels from FDA Liver Toxicity Knowledge Base, and clinical reports from LiverTox, and with the employment of bioinformatic and computational tools, this study developed an approach to characterize and predict DILI based on the molecular understanding of the processes (toxicity pathways). RESULTS: A panel of 11 pathways widely covering biological processes and stress responses was established using a training set of six positive and one negative DILI drugs from open TG-GATEs. An entropy weight method-based model was developed to weight responsive genes within a pathway, and an interpretable machine-learning (ML) model XGBoot-SHAP was trained to rank the importance of pathways to the panel activity. The panel activity was proven to differentiate between injured and noninjured sample points and characterize DILI manifestation using six training drugs. Next, the model was tested using an additional 89 drugs (61 positives + 28 negatives), and a precision of 86% and higher can be achieved. CONCLUSIONS: This study provides a novel approach to mechanisms-driven prediction modeling, as well as big data integration for insights into pharmacology and other human biology areas.

4.
Ecotoxicol Environ Saf ; 261: 115103, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285672

RESUMEN

Aristolochic acid (AA) as an emerging contaminant in herbal medicines or crops has been well-recognized for causing nephropathy since 1990s. Over the last decade, mounting evidence has linked AA to liver injury; however, the underlying mechanism is poorly elucidated. MicroRNAs respond to environmental stress and mediate multiple biological processes, thus showing biomarker potentials prognostically or diagnostically. In the present study, we investigated the role of miRNAs in AA-induced hepatotoxicity, specifically in regulating NQO1, the key enzyme responsible for AA bioactivation. In silico analysis showed that hsa-miR-766-3p and hsa-miR-671-5p were significantly associated with AAI exposure as well as NQO1 induction. A 28-day rat experiment of 20 mg/kg AA exposure demonstrated a 3-fold increase of NQO1 and an almost 50 % decrease of the homologous miR-671 that were accompanied with liver injury, which was consistent with in silico prediction. Further mechanistic investigation using Huh7 cells with IC50 of AAI at 146.5 µM showed both hsa-miR-766-3p and hsa-miR-671-5p were able to directly bind to and down-regulate NQO1 basal expression. In addition, both miRNAs were shown to suppress AAI-induced NQO1 upregulation in Huh7 cells at a cytotoxic concentration of 70 µM, and consequently alleviate AAI-induced cellular effects, including cytotoxicity and oxidative stress. Together, these data illustrate that miR-766-3p and miR-671-5p attenuate AAI-induced hepatotoxicity, and thus have monitoring and diagnostic potentials.


Asunto(s)
Ácidos Aristolóquicos , Enfermedad Hepática Inducida por Sustancias y Drogas , MicroARNs , NAD(P)H Deshidrogenasa (Quinona) , Animales , Ratas , Ácidos Aristolóquicos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , MicroARNs/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Humanos
5.
Environ Int ; 170: 107588, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36274491

RESUMEN

MiRNAs are widely acknowledged as regulating gene expression and thus, being involved in broad biological functions, environmental responses, and the process of diseases. Epidemiology could provide exposure- or disease-relevant miRNAs, while toxicology could reveal the underlying mechanisms. Here, a new "Bottom-up" approach was proposed to identify miRNAs that are responsible for environmental exposure-induced adverse outcomes. In our previous study, 5 key toxicity pathways were established underlying BaP-induced lung diseases; further, genes from these 5 pathways that were responsive to BaP exposure in HBE-CYP1A1 cells were identified. In this study, we identified 26 miRNA:mRNA interactions during BaP exposure through RNA-sequencing using the same HBE-CYP1A1 cells. According to the expression alteration and regulatory mechanisms, we summarized 8 action patterns of miRNA:mRNA, which led to the induction of miRNAs that predominantly regulate target genes and responsible are for the pathway perturbations (as "drivers"), and miRNAs that subordinately regulate genes during pathway perturbations (as "symptoms"). 5 corresponding miRNAs: miR-3173-5p, miR-629-3p, miR-9-5p, miR-1343-3p and miR-219a-1-3p were identified as "drivers", and were all validated with expression alteration in lung disease patients from published studies. In conclusion, this study offers a new approach to identification of epigenetic factors that may shed light on the causation of environment-related health outcomes.


Asunto(s)
Benzo(a)pireno , Epigenómica , Enfermedades Pulmonares , MicroARNs , Humanos , MicroARNs/genética , ARN Mensajero , Benzo(a)pireno/toxicidad , Línea Celular , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...