Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159432

RESUMEN

Perovskite nanocrystals (PCNs) exhibit a significant quantum confinement effect that enhances multiexciton generation, making them promising for photocatalytic CO2 reduction. However, their conversion efficiency is hindered by poor exciton dissociation. To address this, we synthesized ferrocene-methanol-functionalized CsPbBr3 (CPB/FcMeOH) using a ligand engineering approach. By manipulating the electronic coupling between ligands and the PCN surface, facilitated by the increased dipole moment from hydrogen bonding in FcMeOH molecules, we effectively controlled exciton dissociation and interfacial charge transfer. Under 5 h of irradiation, the CO yield of CPB/FcMeOH reached 772.79 µmol g-1, 4.95 times higher than pristine CPB. This high activity is due to the formation of hydrogen-bonded FcMeOH clusters on the CPB surface. The nonpolar disruption and strong dipole moment of FcMeOH molecules enhance electronic coupling between the FcMeOH ligands and the CPB surface, reducing the surface barrier energy. Consequently, exciton dissociation and interfacial charge transfer are promoted, efficiently utilizing multiple excitons in quantum-confined domains. Transient absorption spectroscopy confirms that CPB/FcMeOH exhibits optimized exciton behavior with fast internal relaxation, trapping, and a short recombination time, allowing photogenerated charges to more rapidly participate in CO2 reduction.

2.
Front Bioeng Biotechnol ; 12: 1441075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108598

RESUMEN

The persistent expansion in world energy and synthetic compounds requires the improvement of renewable alternatives in contrast to non-sustainable energy wellsprings. Lignocellulose is an encouraging feedstock to be utilized in biorefineries for its conversion into value-added products, including biomaterials, biofuels and several bio-based synthetic compounds. Aside from all categories, biofuel, particularly bioethanol is the most substantial fuel derived from lignocellulosic biomass and can be obtained through microbial fermentation. Generally, extreme settings are required for lignocellulosic pretreatment which results in the formation of inhibitors during biomassdegradation. Occasionally, lignin polymers also act as inhibitors and are left untreated during the pretreatment, engendering inefficient hydrolysis. The valorization of lignocellulosic biomass by laccases can be viewed as a fundamental trend for improving bioethanol production. However, one of the main obstacles for developing commercially viable biofuel industries is the cost of enzymes, which can be resolved by utilizing laccases derived from microbial sources. Microbial laccases have been considered an exceptionally integral asset for delignification and detoxification of pretreated LCB, which amplify the resultant fermentation and saccharification processes. This review provides a summary of microbial laccases and their role in valorizing LCB to bioethanol, compelling enthralling applications in bio-refining industries all across the globe.

3.
Langmuir ; 40(16): 8520-8532, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608211

RESUMEN

Nowadays, super nitrogen-doped biochar (SNBC) material has become one of the most promising metal-free catalysts for activating peroxymonosulfate (PMS) to degrade organic pollutants. To understand the evolution of SNBC properties with fabrication conditions, a variety of SNBC materials were prepared and characterized by elemental analysis, N2 adsorption-desorption, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. We systematically investigated the activation potential of these SNBC materials for PMS to degrade phenol. SN1BC-800 with the best catalytic performance was obtained by changing the activation temperatures and the ratio of biochar to melamine. The effects of catalyst dosage, the PMS concentration, pH, and reaction temperature on phenol degradation were studied in detail. In the presence of 0.3 g/L SN1BC-800 and 1 g/L PMS, the removal rate of 20 mg/L phenol could reach 100% within 5 min. According to electron paramagnetic resonance spectra and free radical quenching experiments, a nonfree radical pathway of phenol degradation dominated by 1O2 and electron transfer was proposed. More interestingly, the excellent catalytic performance of the SN1BC-800/PMS system is universally applicable in the degradation of other typical organic pollutants. In addition, the degradation rate of phenol is still over 80% after five reuses, which shows that the SN1BC-800 catalyst has high stability and good application prospects in environmental remediation.

4.
Sci Bull (Beijing) ; 69(7): 901-912, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38302334

RESUMEN

Perovskite quantum dots (PQDs) hold immense potential as photocatalysts for CO2 reduction due to their remarkable quantum properties, which facilitates the generation of multiple excitons, providing the necessary high-energy electrons for CO2 photoreduction. However, harnessing multi-excitons in PQDs for superior photocatalysis remains challenging, as achieving the concurrent dissociation of excitons and interparticle energy transfer proves elusive. This study introduces a ligand density-controlled strategy to enhance both exciton dissociation and interparticle energy transfer in CsPbBr3 PQDs. Optimized CsPbBr3 PQDs with the regulated ligand density exhibit efficient photocatalytic conversion of CO2 to CO, achieving a 2.26-fold improvement over unoptimized counterparts while maintaining chemical integrity. Multiple analytical techniques, including Kelvin probe force microscopy, temperature-dependent photoluminescence, femtosecond transient absorption spectroscopy, and density functional theory calculations, collectively affirm that the proper ligand termination promotes the charge separation and the interparticle transfer through ligand-mediated interfacial electron coupling and electronic interactions. This work reveals ligand density-dependent variations in the gas-solid photocatalytic CO2 reduction performance of CsPbBr3 PQDs, underscoring the importance of ligand engineering for enhancing quantum dot photocatalysis.

5.
Proc Natl Acad Sci U S A ; 121(9): e2315956121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377201

RESUMEN

Photo-catalytic CO2 reduction with perovskite quantum dots (QDs) shows potential for solar energy storage, but it encounters challenges due to the intricate multi-electron photoreduction processes and thermodynamic and kinetic obstacles associated with them. This study aimed to improve photo-catalytic performance by addressing surface barriers and utilizing multiple-exciton generation in perovskite QDs. A facile surface engineering method was employed, involving the grafting of ferrocene carboxylic acid (FCA) onto CsPbBr3 (CPB) QDs, to overcome limitations arising from restricted multiple-exciton dissociation and inefficient charge transfer dynamics. Kelvin Probe Force Microscopy and XPS spectral confirmed successfully creating an FCA-modulated microelectric field through the Cs active site, thus facilitating electron transfer, disrupting surface barrier energy, and promoting multi-exciton dissociations. Transient absorption spectroscopy showed enhanced charge transfer and reduced energy barriers, resulting in an impressive CO2-to-CO conversion rate of 132.8 µmol g-1 h-1 with 96.5% selectivity. The CPB-FCA catalyst exhibited four-cycle reusability and 72 h of long-term stability, marking a significant nine-fold improvement compared to pristine CPB (14.4 µmol g-1 h-1). These results provide insights into the influential role of FCA in regulating intramolecular charge transfer, enhancing multi-exciton dissociation, and improving CO2 photoreduction on CPB QDs. Furthermore, these findings offer valuable knowledge for controlling quantum-confined exciton dissociation to enhance CO2 photocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA